DOI QR코드

DOI QR Code

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa (Department of Physics, Presidency University) ;
  • Manjunatha, H.C. (Department of Physics, Government College for women) ;
  • Vidya, Y.S. (Department of Physics, Lal Bahadur Shastri Government First Grade College, RT Nagar) ;
  • Sridhar, K.N. (Department of Physics, Government First Grade College) ;
  • Pasha, U. Mahaboob (Department of Physics, Presidency University) ;
  • Seenappa, L. (Department of Physics, Government College for women) ;
  • Sadashivamurthy, B. (Department of Chemistry, Government First Grade College) ;
  • Dhananjaya, N. (Department of Physics, BMS Institute of Technology and Management) ;
  • Sathish, K.V. (Department of Physics, Government College for women) ;
  • Gupta, P.S. Damodara (Department of Physics, Government College for women)
  • Received : 2021.06.18
  • Accepted : 2021.09.22
  • Published : 2022.03.25

Abstract

In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

Keywords

References

  1. L. Zhou, W. Wang, H. Xu, S. Sun, M. Shang, Chem A Eur J 15 (2009) 1776. https://doi.org/10.1002/chem.200801234
  2. G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angewandte Chemie International Edition 50 (2011) 826. https://doi.org/10.1002/anie.201000235
  3. A.M. Abu-Dief, W. Mohamed, Mater Res Express 4 (2017), 035039. https://doi.org/10.1088/2053-1591/aa6712
  4. L. Kumari, J.-H. Lin, Y.-R. Ma, J Phy: Condensed Matter 19 (2007) 406204. https://doi.org/10.1088/0953-8984/19/40/406204
  5. A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullane, K. Kalantar-Zadeh, j mater chem c 2 (2014) 5247. https://doi.org/10.1039/c4tc00345d
  6. A.L. Pereira, D. Errandonea, A. Beltran, L. Gracia, O. Gomis, J.A. Sans, B. Garcia-Domene, A. Miquel-Veyrat, F. Manjon, A. Munoz, et al., J Phy: Condensed Matter 25 (2013) 475402. https://doi.org/10.1088/0953-8984/25/47/475402
  7. J. Li, B.Z. Wu, Z.X. Zhou, Micro & Nano Letters 13 (2018) 1443. https://doi.org/10.1049/mnl.2018.5179
  8. G. Murariu, S. Condurache-Bota, N. Tigau, Int J Modern Physics B 26 (2012) 1250049. https://doi.org/10.1142/S021797921250049X
  9. S. Sanna, V. Esposito, M. Christensen, N. Pryds, APL Materials 4 (2016) 121101. https://doi.org/10.1063/1.4971801
  10. Y. Wang, Y. Li, Journal colloid interface sci 454 (2015) 238. https://doi.org/10.1016/j.jcis.2015.05.001
  11. S. Sood, S.K. Mehta, A. Sinha, S.K. Kansal, Chem Eng J 290 (2016) 45. https://doi.org/10.1016/j.cej.2016.01.017
  12. M. Malligavathy, D.P. Padiyan, Adv. Mat. Proc 2 (2017) 51-55. https://doi.org/10.5185/amp.2017/112
  13. B. Sarma, A.L. Jurovitzki, Y.R. Smith, S.K. Mohanty, M. Misra, ACS appl mater interfaces 5 (2013) 1688. https://doi.org/10.1021/am302738r
  14. J.Z. Marinho, R.A. Silva, T.G. Barbosa, E.M. Richter, R.A. Munoz, R.C. Lima, Electroanalysis 25 (2013) 765. https://doi.org/10.1002/elan.201200592
  15. L. Ding, Q. Zhao, J. Zhu, Z. Fan, B. Liu, in: International Conference on Materials Chemistry and Environmental Protection 2015, Atlantis Press, 2016, pp. 17-20.
  16. J. Divya, N. Shivaramu, W. Purcell, W. Roos, H. Swart, Appl. Surf. Sci. 497 (2019) 143748. https://doi.org/10.1016/j.apsusc.2019.143748
  17. S.A. Issa, A.M. Ali, G. Susoy, H. Tekin, Y.B. Saddeek, R. Elsaman, H. Somaily, H. Algarni, Ceram. Int. 46 (2020) 20251. https://doi.org/10.1016/j.ceramint.2020.05.107
  18. M. Sayyed, A. Askin, M. Zaid, S. Olukotun, M.U. Khandaker, D. Tishkevich, D. Bradley, Radiat. Phys. Chem. 186 (2021).
  19. D. Tishkevich, A. Vorobjova, D.A. Vinnik, in: Materials Science Forum, vol. 946, Trans Tech Publ, 2019, pp. 235-241. https://doi.org/10.4028/www.scientific.net/msf.946.235
  20. D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, A.L. Kozlovskiy, M.M. Zdorovets, ACS Appl. Energy Mater 1 (2018) 1695. https://doi.org/10.1021/acsaem.8b00179
  21. R. Mirji, B. Lobo, in: National Conference on 'Advances in VLSI and Microelectronics, 'In PC Jabin Science College, Huballi, India, 2017, pp. 96-100.
  22. L. Seenappa, H. Manjunatha, K. Sridhar, C. Hanumantharayappa, IJPAP 56 (2018). http://nopr.niscair.res.in/handle/123456789/44299.
  23. D. Stewart, P. Harrison, B. Morgan, Y. Ramachers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 571 (2007) 651. https://doi.org/10.1016/j.nima.2006.11.021
  24. M.F. Turhan, F. Akman, H. Polat, M.R. Kacal, I. Demirkol, Prog. Nucl. Energy 129 (2020) 103504. https://doi.org/10.1016/j.pnucene.2020.103504
  25. M. Tajiri, Y. Tokiya, J. Uenishi, M. Sunaoka, K. Watanabe, Radiother. Oncol. 80 (2006) 391. https://doi.org/10.1016/j.radonc.2006.08.002
  26. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Progress in Nuclear Energy 52 (2010) 620. https://doi.org/10.1016/j.pnucene.2010.04.006
  27. I.M. Nikbin, R. Mohebbi, S. Dezhampanah, S. Mehdipour, R. Mohammadi, T. Nejat, Radiat. Phys. Chem. 162 (2019) 157. https://doi.org/10.1016/j.radphyschem.2019.05.008
  28. A. Mesbahi, H. Ghiasi, Appl. Radiat. Isot. 136 (2018) 27. https://doi.org/10.1016/j.apradiso.2018.02.004
  29. H. Tekin, M. Sayyed, S.A. Issa, Radiat. Phys. Chem. 150 (2018) 95. https://doi.org/10.1016/j.radphyschem.2018.05.002
  30. M. Rashad, H. Tekin, H.M. Zakaly, M. Pyshkina, S.A. Issa, G. Susoy, Nucl Eng Technol 52 (2020) 2078. https://doi.org/10.1016/j.net.2020.02.013
  31. H. Oudghiri-Hassani, S. Rakass, F.T. Al Wadaani, K.J. Al-Ghamdi, A. Omer, M. Messali, M. Abboudi, J Taibah University Sci 9 (2015) 508. https://doi.org/10.1016/j.jtusci.2015.01.009
  32. Q. Huang, S. Zhang, C. Cai, B. Zhou, Materials Letters 65 (2011) 988. https://doi.org/10.1016/j.matlet.2010.12.055
  33. I. Uddin, S. Adyanthaya, A. Syed, K. Selvaraj, A. Ahmad, P. Poddar, J. Nanosci. Nanotechnol. 8 (2008) 3909. https://doi.org/10.1166/jnn.2008.179
  34. W. Dong, C. Zhu, J. Phys. Chem. Solid. 64 (2003) 265. https://doi.org/10.1016/S0022-3697(02)00291-3
  35. X. Huang, W. Zhang, Y. Tan, J. Wu, Y. Gao, B. Tang, Ceramics International 42 (2016) 2099. https://doi.org/10.1016/j.ceramint.2015.09.157
  36. S. Patil, K. Anantharaju, D. Rangappa, Y. Vidya, S. Sharma, L. Renuka, H. Nagabhushana, Environ Nanotechnol, Monit Manag 13 (2020) 100268. https://doi.org/10.1016/j.enmm.2019.100268
  37. A. Mukasyan, K. Manukyan, Nanomaterials Synthesis, Elsevier, 2019, pp. 85-120.
  38. N. Nagaraja, H. Manjunatha, L. Seenappa, K. Sridhar, H. Ramalingam, Radiat. Phys. Chem. 171 (2020) 108723. https://doi.org/10.1016/j.radphyschem.2020.108723
  39. H.C. Manjunatha, Radiat. Phys. Chem. 113 (2015) 24. https://doi.org/10.1016/j.radphyschem.2015.04.010
  40. H.C. Manjunatha, K.V. Sathish, L. Seenappa, D. Gupta, S.A.C. Raj, Radiat. Phys. Chem. 165 (2019) 108414. https://doi.org/10.1016/j.radphyschem.2019.108414
  41. S. Manohara, S. Hanagodimath, L. Gerward, J. Nucl. Mater 393 (2009) 465. https://doi.org/10.1016/j.jnucmat.2009.07.001
  42. L. Seenappa, H.C. Manjunatha, B.M. Chandrika, H. Chikka, J Radiat Protect Res 42 (2017) 26. https://doi.org/10.14407/jrpr.2017.42.1.26
  43. H.C. Manjunatha, L. Seenappa, K.N. Sridhar, C. Hanumantharayappa, Int. J. Nucl. Energy Sci. Technol 11 (2017) 377. https://doi.org/10.1504/IJNEST.2017.090659
  44. H.C. Manjunatha, Radiation Physics and Chemistry 137 (2017) 254. https://doi.org/10.1016/j.radphyschem.2016.01.024
  45. B. Rudraswamy, N. Dhananjaya, H.C. Manjunatha, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 619 (2010) 171. https://doi.org/10.1016/j.nima.2009.11.026
  46. H.C. Manjunatha, B.M. Chandrika, L. Seenappa, C. Hanumantharayappa, Int. J. Nucl. Energy Sci. Technol 10 (2016) 356. https://doi.org/10.1504/IJNEST.2016.082005
  47. H.C. Manjunatha, J Med Phys/Assoc Med Physicists of India 39 (2014) 112. https://doi.org/10.4103/0971-6203.131286
  48. H.C. Manjunatha, B. Rudraswamy, Health physics 104 (2013) 158. https://doi.org/10.1097/HP.0b013e31827132e3
  49. K.C. Suresh, H.C. Manjunatha, B. Rudraswamy, Radiation Protection Dosimetry 43 (2008).
  50. H. Manjunatha, B. Rudraswamy, Annals of Nuclear Energy 38 (2011) 2271. https://doi.org/10.1016/j.anucene.2011.06.006
  51. H. Manjunatha, B. Rudraswamy, Radiat. Phys. Chem 80 (2011) 14. https://doi.org/10.1016/j.radphyschem.2010.09.004
  52. S. Yakout, J Environ Chem Eng 8 (2020) 103644. https://doi.org/10.1016/j.jece.2019.103644
  53. J. Prasannakumar, Y. Vidya, K. Anantharaju, G. Ramgopal, H. Nagabhushana, S. Sharma, B.D. Prasad, S. Prashantha, R. Basavaraj, H. Rajanaik, et al., Spectrochim. Acta Mol. Biomol. Spectrosc 151 (2015) 131. https://doi.org/10.1016/j.saa.2015.06.081
  54. Y. Vidya, K. Gurushantha, H. Nagabhushana, S. Sharma, K. Anantharaju, C. Shivakumara, D. Suresh, H. Nagaswarupa, S. Prashantha, M. Anilkumar, J. Alloys Compd. 622 (2015) 86. https://doi.org/10.1016/j.jallcom.2014.10.024
  55. K. Gurushantha, K. Anantharaju, S. Sharma, H. Nagaswarupa, S. Prashantha, K.V. Mahesh, L. Renuka, Y. Vidya, H. Nagabhushana, J. Alloys Compd. 685 (2016) 761. https://doi.org/10.1016/j.jallcom.2016.06.105
  56. V. Fruth, M. Popa, D. Berger, C. Ionica, M. Jitianu, J. Eur. Ceram. Soc. 24 (2004) 1295. https://doi.org/10.1016/S0955-2219(03)00506-5
  57. M.-S. Chen, S.-H. Chen, F.-C. Lai, C.-Y. Chen, M.-Y. Hsieh, W.-J. Chang, J.-C. Yang, C.-K. Lin, Materials 11 (2018) 1685. https://doi.org/10.3390/ma11091685
  58. G. Viruthagiri, P. Kannan, N. Shanmugam, Photonics Nanostruct-Fund Appl 32 (2018) 35. https://doi.org/10.1016/j.photonics.2018.05.008
  59. R. Jha, R. Pasricha, V. Ravi, Ceram. Int 31 (2005) 495. https://doi.org/10.1016/j.ceramint.2004.06.013
  60. X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, R. Wang, J Phys D: Appl. Phys. 46 (2012), 035103. https://doi.org/10.1088/0022-3727/46/3/035103
  61. J.H. Hubbell, S.M. Seltzer. https://www.osti.gov/biblio/76335, 1995.
  62. M. Berger. http://www.nist.gov/pml/data/xcom/index.cfm, 2010.
  63. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, Radiat. Phys. Chem. 60 (2001) 23. https://doi.org/10.1016/S0969-806X(00)00324-8