References
- L. Zhou, W. Wang, H. Xu, S. Sun, M. Shang, Chem A Eur J 15 (2009) 1776. https://doi.org/10.1002/chem.200801234
- G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angewandte Chemie International Edition 50 (2011) 826. https://doi.org/10.1002/anie.201000235
- A.M. Abu-Dief, W. Mohamed, Mater Res Express 4 (2017), 035039. https://doi.org/10.1088/2053-1591/aa6712
- L. Kumari, J.-H. Lin, Y.-R. Ma, J Phy: Condensed Matter 19 (2007) 406204. https://doi.org/10.1088/0953-8984/19/40/406204
- A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullane, K. Kalantar-Zadeh, j mater chem c 2 (2014) 5247. https://doi.org/10.1039/c4tc00345d
- A.L. Pereira, D. Errandonea, A. Beltran, L. Gracia, O. Gomis, J.A. Sans, B. Garcia-Domene, A. Miquel-Veyrat, F. Manjon, A. Munoz, et al., J Phy: Condensed Matter 25 (2013) 475402. https://doi.org/10.1088/0953-8984/25/47/475402
- J. Li, B.Z. Wu, Z.X. Zhou, Micro & Nano Letters 13 (2018) 1443. https://doi.org/10.1049/mnl.2018.5179
- G. Murariu, S. Condurache-Bota, N. Tigau, Int J Modern Physics B 26 (2012) 1250049. https://doi.org/10.1142/S021797921250049X
- S. Sanna, V. Esposito, M. Christensen, N. Pryds, APL Materials 4 (2016) 121101. https://doi.org/10.1063/1.4971801
- Y. Wang, Y. Li, Journal colloid interface sci 454 (2015) 238. https://doi.org/10.1016/j.jcis.2015.05.001
- S. Sood, S.K. Mehta, A. Sinha, S.K. Kansal, Chem Eng J 290 (2016) 45. https://doi.org/10.1016/j.cej.2016.01.017
- M. Malligavathy, D.P. Padiyan, Adv. Mat. Proc 2 (2017) 51-55. https://doi.org/10.5185/amp.2017/112
- B. Sarma, A.L. Jurovitzki, Y.R. Smith, S.K. Mohanty, M. Misra, ACS appl mater interfaces 5 (2013) 1688. https://doi.org/10.1021/am302738r
- J.Z. Marinho, R.A. Silva, T.G. Barbosa, E.M. Richter, R.A. Munoz, R.C. Lima, Electroanalysis 25 (2013) 765. https://doi.org/10.1002/elan.201200592
- L. Ding, Q. Zhao, J. Zhu, Z. Fan, B. Liu, in: International Conference on Materials Chemistry and Environmental Protection 2015, Atlantis Press, 2016, pp. 17-20.
- J. Divya, N. Shivaramu, W. Purcell, W. Roos, H. Swart, Appl. Surf. Sci. 497 (2019) 143748. https://doi.org/10.1016/j.apsusc.2019.143748
- S.A. Issa, A.M. Ali, G. Susoy, H. Tekin, Y.B. Saddeek, R. Elsaman, H. Somaily, H. Algarni, Ceram. Int. 46 (2020) 20251. https://doi.org/10.1016/j.ceramint.2020.05.107
- M. Sayyed, A. Askin, M. Zaid, S. Olukotun, M.U. Khandaker, D. Tishkevich, D. Bradley, Radiat. Phys. Chem. 186 (2021).
- D. Tishkevich, A. Vorobjova, D.A. Vinnik, in: Materials Science Forum, vol. 946, Trans Tech Publ, 2019, pp. 235-241. https://doi.org/10.4028/www.scientific.net/msf.946.235
- D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, A.L. Kozlovskiy, M.M. Zdorovets, ACS Appl. Energy Mater 1 (2018) 1695. https://doi.org/10.1021/acsaem.8b00179
- R. Mirji, B. Lobo, in: National Conference on 'Advances in VLSI and Microelectronics, 'In PC Jabin Science College, Huballi, India, 2017, pp. 96-100.
- L. Seenappa, H. Manjunatha, K. Sridhar, C. Hanumantharayappa, IJPAP 56 (2018). http://nopr.niscair.res.in/handle/123456789/44299.
- D. Stewart, P. Harrison, B. Morgan, Y. Ramachers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 571 (2007) 651. https://doi.org/10.1016/j.nima.2006.11.021
- M.F. Turhan, F. Akman, H. Polat, M.R. Kacal, I. Demirkol, Prog. Nucl. Energy 129 (2020) 103504. https://doi.org/10.1016/j.pnucene.2020.103504
- M. Tajiri, Y. Tokiya, J. Uenishi, M. Sunaoka, K. Watanabe, Radiother. Oncol. 80 (2006) 391. https://doi.org/10.1016/j.radonc.2006.08.002
- I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Progress in Nuclear Energy 52 (2010) 620. https://doi.org/10.1016/j.pnucene.2010.04.006
- I.M. Nikbin, R. Mohebbi, S. Dezhampanah, S. Mehdipour, R. Mohammadi, T. Nejat, Radiat. Phys. Chem. 162 (2019) 157. https://doi.org/10.1016/j.radphyschem.2019.05.008
- A. Mesbahi, H. Ghiasi, Appl. Radiat. Isot. 136 (2018) 27. https://doi.org/10.1016/j.apradiso.2018.02.004
- H. Tekin, M. Sayyed, S.A. Issa, Radiat. Phys. Chem. 150 (2018) 95. https://doi.org/10.1016/j.radphyschem.2018.05.002
- M. Rashad, H. Tekin, H.M. Zakaly, M. Pyshkina, S.A. Issa, G. Susoy, Nucl Eng Technol 52 (2020) 2078. https://doi.org/10.1016/j.net.2020.02.013
- H. Oudghiri-Hassani, S. Rakass, F.T. Al Wadaani, K.J. Al-Ghamdi, A. Omer, M. Messali, M. Abboudi, J Taibah University Sci 9 (2015) 508. https://doi.org/10.1016/j.jtusci.2015.01.009
- Q. Huang, S. Zhang, C. Cai, B. Zhou, Materials Letters 65 (2011) 988. https://doi.org/10.1016/j.matlet.2010.12.055
- I. Uddin, S. Adyanthaya, A. Syed, K. Selvaraj, A. Ahmad, P. Poddar, J. Nanosci. Nanotechnol. 8 (2008) 3909. https://doi.org/10.1166/jnn.2008.179
- W. Dong, C. Zhu, J. Phys. Chem. Solid. 64 (2003) 265. https://doi.org/10.1016/S0022-3697(02)00291-3
- X. Huang, W. Zhang, Y. Tan, J. Wu, Y. Gao, B. Tang, Ceramics International 42 (2016) 2099. https://doi.org/10.1016/j.ceramint.2015.09.157
- S. Patil, K. Anantharaju, D. Rangappa, Y. Vidya, S. Sharma, L. Renuka, H. Nagabhushana, Environ Nanotechnol, Monit Manag 13 (2020) 100268. https://doi.org/10.1016/j.enmm.2019.100268
- A. Mukasyan, K. Manukyan, Nanomaterials Synthesis, Elsevier, 2019, pp. 85-120.
- N. Nagaraja, H. Manjunatha, L. Seenappa, K. Sridhar, H. Ramalingam, Radiat. Phys. Chem. 171 (2020) 108723. https://doi.org/10.1016/j.radphyschem.2020.108723
- H.C. Manjunatha, Radiat. Phys. Chem. 113 (2015) 24. https://doi.org/10.1016/j.radphyschem.2015.04.010
- H.C. Manjunatha, K.V. Sathish, L. Seenappa, D. Gupta, S.A.C. Raj, Radiat. Phys. Chem. 165 (2019) 108414. https://doi.org/10.1016/j.radphyschem.2019.108414
- S. Manohara, S. Hanagodimath, L. Gerward, J. Nucl. Mater 393 (2009) 465. https://doi.org/10.1016/j.jnucmat.2009.07.001
- L. Seenappa, H.C. Manjunatha, B.M. Chandrika, H. Chikka, J Radiat Protect Res 42 (2017) 26. https://doi.org/10.14407/jrpr.2017.42.1.26
- H.C. Manjunatha, L. Seenappa, K.N. Sridhar, C. Hanumantharayappa, Int. J. Nucl. Energy Sci. Technol 11 (2017) 377. https://doi.org/10.1504/IJNEST.2017.090659
- H.C. Manjunatha, Radiation Physics and Chemistry 137 (2017) 254. https://doi.org/10.1016/j.radphyschem.2016.01.024
- B. Rudraswamy, N. Dhananjaya, H.C. Manjunatha, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 619 (2010) 171. https://doi.org/10.1016/j.nima.2009.11.026
- H.C. Manjunatha, B.M. Chandrika, L. Seenappa, C. Hanumantharayappa, Int. J. Nucl. Energy Sci. Technol 10 (2016) 356. https://doi.org/10.1504/IJNEST.2016.082005
- H.C. Manjunatha, J Med Phys/Assoc Med Physicists of India 39 (2014) 112. https://doi.org/10.4103/0971-6203.131286
- H.C. Manjunatha, B. Rudraswamy, Health physics 104 (2013) 158. https://doi.org/10.1097/HP.0b013e31827132e3
- K.C. Suresh, H.C. Manjunatha, B. Rudraswamy, Radiation Protection Dosimetry 43 (2008).
- H. Manjunatha, B. Rudraswamy, Annals of Nuclear Energy 38 (2011) 2271. https://doi.org/10.1016/j.anucene.2011.06.006
- H. Manjunatha, B. Rudraswamy, Radiat. Phys. Chem 80 (2011) 14. https://doi.org/10.1016/j.radphyschem.2010.09.004
- S. Yakout, J Environ Chem Eng 8 (2020) 103644. https://doi.org/10.1016/j.jece.2019.103644
- J. Prasannakumar, Y. Vidya, K. Anantharaju, G. Ramgopal, H. Nagabhushana, S. Sharma, B.D. Prasad, S. Prashantha, R. Basavaraj, H. Rajanaik, et al., Spectrochim. Acta Mol. Biomol. Spectrosc 151 (2015) 131. https://doi.org/10.1016/j.saa.2015.06.081
- Y. Vidya, K. Gurushantha, H. Nagabhushana, S. Sharma, K. Anantharaju, C. Shivakumara, D. Suresh, H. Nagaswarupa, S. Prashantha, M. Anilkumar, J. Alloys Compd. 622 (2015) 86. https://doi.org/10.1016/j.jallcom.2014.10.024
- K. Gurushantha, K. Anantharaju, S. Sharma, H. Nagaswarupa, S. Prashantha, K.V. Mahesh, L. Renuka, Y. Vidya, H. Nagabhushana, J. Alloys Compd. 685 (2016) 761. https://doi.org/10.1016/j.jallcom.2016.06.105
- V. Fruth, M. Popa, D. Berger, C. Ionica, M. Jitianu, J. Eur. Ceram. Soc. 24 (2004) 1295. https://doi.org/10.1016/S0955-2219(03)00506-5
- M.-S. Chen, S.-H. Chen, F.-C. Lai, C.-Y. Chen, M.-Y. Hsieh, W.-J. Chang, J.-C. Yang, C.-K. Lin, Materials 11 (2018) 1685. https://doi.org/10.3390/ma11091685
- G. Viruthagiri, P. Kannan, N. Shanmugam, Photonics Nanostruct-Fund Appl 32 (2018) 35. https://doi.org/10.1016/j.photonics.2018.05.008
- R. Jha, R. Pasricha, V. Ravi, Ceram. Int 31 (2005) 495. https://doi.org/10.1016/j.ceramint.2004.06.013
- X. Yang, X. Lian, S. Liu, G. Wang, C. Jiang, J. Tian, J. Chen, R. Wang, J Phys D: Appl. Phys. 46 (2012), 035103. https://doi.org/10.1088/0022-3727/46/3/035103
- J.H. Hubbell, S.M. Seltzer. https://www.osti.gov/biblio/76335, 1995.
- M. Berger. http://www.nist.gov/pml/data/xcom/index.cfm, 2010.
- L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, Radiat. Phys. Chem. 60 (2001) 23. https://doi.org/10.1016/S0969-806X(00)00324-8