DOI QR코드

DOI QR Code

Printed Dipole Antenna Fed by Broadsided Coupled Stripline for Wideband

측면 결합 스트립 선로를 이용한 광대역 프린트 다이폴 안테나

  • 이승엽 (전남대학교 전자통신전공)
  • Received : 2022.09.29
  • Accepted : 2022.12.17
  • Published : 2022.12.31

Abstract

In this paper, the design of a printed dipole antenna fed by broadside coupled striplines (BCS) for the 3.5GHz band is described. The two fins of the bow tie are, respectively, on the two sides of the substrate. The feeding balanced lines adopted for 1×2 array are the BCS. The obtained numerical results are in good agreement with experimental data. Through experiments with printed dipole antennas of various extended angles, the printed dipole antenna exhibits the wide bandwidth in the desired frequency band, which has a bandwidth of 28% for VSWR < 2.0 : 1. And within this bandwidth, This printed dipole antenna achieves a stable radiation pattern. It is found that the narrow band and feeding for array characteristic which is a disadvantage of the conventional printed dipole antenna can be improved. The radiation pattern showed omnidirectional characteristics and the maximum gain was about 4.4dBi.

본 논문에서는 3.5GHz 대역에 대해 측면 결합 선로(BCS:Broadside Coupled Striplines)에 의해 공급되는 프린트 다이폴 안테나의 설계 제작에 대해 연구하였다. 프린트 다이폴 안테나의 두 Arm(암)은 각각 기판의 양면에 있습니다. 1×2배열 안테나에 적용된 공급 균형 라인은 BCS입니다. 프린트 다이폴 안테나의 여러 파라미터 연구를 하였고, 시뮬레이션 결과는 최종 실험 데이터와 일치하였다. 실험 결과 원하는 주파수 대역에서 가장 넓은 대역폭을 나타내며 VSWR < 2.0:1 대해 28%의 대역폭을 보였다. 기존 프린트 다이폴 안테나의 단점인 협대역과 배열 시 급전선 특성을 개선할 수 있음을 알 수 있었다. 수평면 방사패턴은 전방향 특성을 보였고 최대 이득은 4.4dBi를 보였다.

Keywords

References

  1. D. Choi, "5G, Wi-Fi6, OpenRoaming," Korea Internet & Security Agency Report, Korea Internet & Security Agency, vol. 8, 2021, pp. 1-10.
  2. W. Byeon, M. Kim and J. Kim, "Propagation characteristic of frequency band and usage," Institute for information & communication technology planning & evaluation, Weelky ICT Trends, no. 1974, Nov. 2020, pp. 16-30
  3. K. L. Wong, Compact and Broadband Microstrip Antennas. New York, John Wiley & Sons, Inc., 2014.
  4. K. P. Wei, Z. J. Zhang, and Z. H. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, vol. 126, 2012, pp. 101-120. https://doi.org/10.2528/PIER11112101
  5. Y. Q. Zhang, J. W. Rong, X. Li, L. Yang, and S. X. Gong, "Novel wideband omnidirectional antenna for wireless applications," Progress In Electromagnetics Research, vol. 40, 2013, pp. 257-267. https://doi.org/10.2528/PIERC13050401
  6. K. L. Wong, F. R. Hsiao, and T. W. Chiou, "Omnidirectional Planar dipole Array Antenna," IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, 2004, pp. 624-628. https://doi.org/10.1109/TAP.2004.823897
  7. F. R. Hsiao and K. L. Wong, "Omnidirectional planar folded dipole antenna," IEEE Trans. Antennas and Propagation, vol. 52, no. 7, 2004, pp. 1898-1902. https://doi.org/10.1109/TAP.2004.831337
  8. H. Choo, S. Youn, "Implementation of Multi-Beam Pattern Compact MIMO Antenna based on Switched Parasitic Antenna," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 1, 2021, pp. 1-8. https://doi.org/10.13067/JKIECS.2021.16.1.1
  9. G. Sa, S. Kim, and Y. Lim, "Design of Ultra Small Dual Cross-dipole Antenna for mobile devices," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 3, 2019, pp. 489-496. https://doi.org/10.13067/JKIECS.2019.14.3.489
  10. S. Yeo, B. Kang, K. Bae, and C. Yoon, "Study on Data-link Antenna System for UAV," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 1, 2020, pp. 9-14. https://doi.org/10.13067/JKIECS.2020.15.1.9
  11. A. B. Constantine, Antenna Theory Analysis and Design. New York,: John Wiley & Sons, 2005.