• Title/Summary/Keyword: Stabilization Matrix

Search Result 208, Processing Time 0.026 seconds

Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.19
    • /
    • pp.57-65
    • /
    • 2016
  • Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.

Delay-dependent Stabilization for Systems with Multiple Unknown Time-varying Delays

  • Wu, Min;He, Yong;She, Jin-Hua
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.682-688
    • /
    • 2006
  • This paper deals with the delay-dependent and rate-independent stabilization of systems with multiple unknown time-varying delays and time-varying structured uncertainties. All the linear matrix inequalities based conditions are derived by employing free-weighting matrices to express the relationships between the terms in the Leibniz-Newton formula. The criteria do not require any tuning parameters. Numerical examples demonstrate the validity of the method.

Simultaneous stabilization via static ouput feedback using an LMI method (LMI를 이용한 정적출력궤환 동시안정화 제어기 설계)

  • Kim, Seog-Joo;Cheon, Jong-Min;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.523-525
    • /
    • 2005
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a static output feedback controller that simultaneously stabilizes a finite collection of linear time-invariant plants. Simultaneous stabilization by static ouput feedback is represented in terms of LMIs with a rank condition. An iterative penalty method is proposed to solve the rank-constrained LMI problem. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

Controller Design for Continuous-Time Takagi-Sugeno Fuzzy Systems with Fuzzy Lyapunov Functions : LMI Approach

  • Kim, Ho-Jun;Joo, Young-Hoon;Park, Jin-Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • This paper is concerned with stabilization problem of continuous-time Takagi-Sugeno fuzzy systems. To do this, the stabilization problem is investigated based on the new fuzzy Lyapunov functions (NFLFs). The NFLFs depend on not only the fuzzy weighting functions but also their first-time derivatives. The stabilization conditions are derived in terms of linear matrix inequalities (LMIs) which can be solved easily by the Matlab LMI Toolbox. Simulation examples are given to illustrate the effectiveness of this method.

Robust pole placement method using matching condition (Matching 조건을 이용한 강인한 극점배치 방법)

  • 신준호;정정주;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.696-699
    • /
    • 1997
  • In this paper, we presents that for discrete system with matched perturbation of uncertain parameters in the state coefficient matrix A(i.e., with perturbation of A in the range of the input matrix B), the poles of the perturbed closed loop system can be placed into the preassigned circle by the static-state feedback. We discuss the robust stabilization of the system satisfying the matching condition and application to the controller design problem.

  • PDF

A Study on the Robust Stability and Stabilization Problem for Marine Vessel (수상 및 수중 운동체의 강인 안정성 해석 및 안정화에 관한 연구)

  • Kim, Young-Bok;Cho, Kwang-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.379-385
    • /
    • 2012
  • In this paper, the stability and stabilization problems for marine vessels including surface and underwater vehicles are described. In the marine vessels, there are many and strong nonlinear parameters. These give hard design process and difficulties to us. In this article, at first we make a descriptor system representation as a controlled system to preserve the physical parameters of the system as it is. And we propose a new stability and stabilizability conditions based on the quadratic stabilization approach which gives a solution for the unreasonable problems produced by added mass. That is, the proposed conditions are not interfered with the nonsymmetric matrix constraint. And the stability condition is given by an matrix inequality such that it makes us to obtain a solution easily for something.

Design of a Low-order Pole Placement Power System Stabilizer Using Simultaneous Stabilization (동시안정화를 이용한 저차원 극배치 전력계통안정화장치 설계)

  • Kim, Seog-Joo;Lee, Jong-Moo;Kwon, Soon-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1708-1712
    • /
    • 2008
  • This paper describes a linear matrix inequality (LMI) approach to the design of robust low-order power system stabilizers (PSSs), which are used to damp out local-mode oscillations of synchronous generators. The performance of a PSS is expressed as the location of the closed-loop poles, and a single fixed-gain pole-placement controller is synthesized for a wide range of operating conditions. The synthesis results in simultaneous regional pole-placement stabilization. and is formulated as an LMI feasibility problem with a rank condition. A penalty method is applied to solve the rank-constrained LMI problem. Numerical experiments with a single-machine connected to an infinite bus system were performed to demonstrate the proposed method.

Robust Controller Design for a Stabilized Head Mirror

  • Keh, Joong-Eup;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.78-86
    • /
    • 2002
  • In this paper, LMI (Linear Matrix Inequality) based on H$\_$$\infty$/ controller for a lire of sight (LOS) stabilization system. It shows that the proposed controller has more excellent stabilization performance than that of the conventional PI-Lead controller. An H$\_$$\infty$/ control has been also applied to the system for reducing modeling errors and the settling time of the system. The LMI-based H$\_$$\infty$/ controller design is more practical in view of reducing a run-time than Riccati-based H$\_$$\infty$/ controller. This H$\_$$\infty$/ controller is available not only to decrease the gain in PI-Lead control, but also to compensate the identifications for the various uncertain parameters. Therefore, this paper, shows that the proposed LMI-based H$\_$$\infty$/ controller had good disturbance attenuation and reference input tracking performance compared with the control performance of the conventional controller under any real disturbances.

Simultaneous Stabilization Via Static Ouput Feedback Using an LMI Method (LMI를 이용한 정적출력궤환 동시안정화 제어기 설계)

  • Cheon, Jong-Min;Lee, Jong-Moo;Kwon, Soon-Man;Moon, Young-Hyun;Kim, Seog-Joo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.226-228
    • /
    • 2006
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a static output feedback controller that simultaneously stabilizes a finite collection of linear time-invariant plants. Simultaneous stabilization by static ouput feedback is represented in terms of LMIs with a rank condition. An iterative penalty method is proposed to solve the rank-constrained LMI problem. Numerical experiments show the effectiveness of the proposed algorithm.

H Sampled-Data Control of Takagi-Sugeno Fuzzy System (타카기-수게노 퍼지 시스템의 H 샘플치 제어)

  • Kim, Do Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1142-1146
    • /
    • 2014
  • This paper addresses on a $H_{\infty}$ sampled-data stabilization of a Takagi-Sugeno (T-S) fuzzy system. The sampled-data stabilization problem is formulated as a discrete-time stabilization one via a direct discrete-time design approach. It is shown that the sampled-data fuzzy control system is asymptotically stable whenever its exactly discretized model is asymptotically stable. Based on an exact discrete-time model, sufficient design conditions are derived in the format of linear matrix inequalities (LMIs). An example is provided to illustrate the effectiveness of the proposed methodology.