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Delay-dependent Stabilization for Systems with Multiple
Unknown Time-varying Delays

Min Wu, Yong He*, and Jin-Hua She

Abstract: This paper deals with the delay-dependent and rate-independent stabilization of
systems with multiple unknown time-varying delays and time-varying structured uncertainties.
All the linear matrix inequalities based conditions are derived by employing free-weighting
matrices to express the relationships beétween the terms in the Leibniz-Newton formula. The
criteria do not require any tuning parameters. Numerical examples demonstrate the validity of the

method.
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1. INTRODUCTION

Stability and stabilization criteria for a delay system
are an important issue in control theory that has been
attracting a great deal of attention over the past few
decades. To reduce the conservatism of existing
criteria, considerable effort has been expended on
finding delay-dependent ones [1-16]. Most of these
criteria are based on four model transformations of the
original system [1]. Specifically, the descriptor model
transformation method combined with the inequalities
proposed in [2,3] is very efficient [1,4-6,8]. However,
as pointed out by [9-11], it uses fixed weighting
matrices to express the relationships between the
terms in the Leibniz-Newton formula, which can lead
to conservatism. In [9-11], He et al. presented a free-
weighting-matrix approach, which not only solved the
problem with fixed weighting matrices, but also
avoided any model transformation.

In many practical time-delay systems, either the
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delays are time-varying or only the bounds on the
delays are known. Typical time-delay systems with
multiple time-varying delays include a turbojet engine,
a microwave oscillator, the inferred grinding model,
and models of population dynamics [12]. Most delay-
dependent stability and stabilization criteria, which
are for slow delays, i.e., the upper bounds on the
derivatives of the delays are less than 1, are not
applicable to unknown, time-varying delays. The
Razumikhin approach is the main method for dealing
with systems with rapidly varying or unknown
delays [12-14]. Recently, Fridman and Shaked [1,4],
Han [5] and Jing et al. [6] applied a Lyapunov-
Krasovskii functional approach and a descriptor
system approach to the problem of fast time-varying
delays or unknown delays and derived delay-
dependent and rate-independent criteria. In fact, the
free-weighting-matrix approach [10,11] can also be
employed to study this topic.

On the other hand, even though linear matrix
inequalities (LMIs) are known to be an efficient
method for solving standard convex optimization
problems numerically, surprisingly few LMI-based
delay-dependent stabilization criteria have been
reported. A first-order model transformation can
yield LMI-based conditions, but the resulting system
is not equivalent to the original one [17,18]. Although
the use of Park’s or Moon et al.’s inequalities can
improve the results obtained with sucha transformation,
the stabilization conditions are no longer LMIs. In [3],
Moon et al. converted the nonlinear matrix
inequalities to a nonlinear minimization problem
subject to LMI constraints and presented an algorithm
for the design of a delay-dependent state-feedback
controller to stabilize the system. Lee er al [8]
extended this method and combined it with the
descriptor model transformation to study the H
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control problem, but the results were suboptimal.

In this paper, all the LMlI-based stabilization
conditions for systems with multiple unknown time-
varying delays are derived from the delay-dependent
and rate-independent stability criterion extended from
[11]. And they are extended to systems with time-
varying structured uncertainties. To the best of our
knowledge, these are the first LMI-based delay-
dependent and rate-independent stabilization results
using Lyapunov-Krasovskii functional approach for
systems with unknown time-varying delays. Two
numerical examples are used to demonstrate that the
criteria presented in this paper are effective.

2. PRELIMINARIES

Consider a linear system, X, with time-varying
structured uncertainties and multiple unknown time-
varying delays:

x(r) = i(Ai + A4, (1)) x(1 — d; (1))

. i=0
x: +(B+AB())u(r), 1>0, M

(1) = (o), te[-h, 0],

where x(f)eR” is the state vector and u(f)e R?
is the control input. 4, € R”” (i=0, L,---,m) and

BeR™? are constant matrices with appropriate
dimensions. The time-varying structured uncertainties,

A4;(t) e R™" (i=0, 1,---,m) and AB(t)e R™”, are

assumed to be of the form
[Ady(1) A4(r)
=DF()[Ey E

A4, (1) AB(1)]

E, ) @

where DeR™, E, eR®"(i=0, 1,---,m), and E, eRP?
are constant matrices; and F(f)e R™ is an
unknown real, and possibly time-varying with
Lebesgue-measurable elements satisfying
FT()F@)<I, Vie[0,©). (3)

The time delays, dy(r)=0 and d;(1)(i=1,---,m),
are time-varying continuous functions that are
unknown but bounded and satisfy

0<d,(t)<h, i=1,m, 4)
where h; (i =1,---,m) are constants and we define
h= max {h}. The initial condition, ¢(r), is a

=l m

continuous vector-valued initial function of se
[~h, 0]. We are interested in designing a memoryless

state-feedback controller

u(t) = Kx(t), (5)

where K e RP
stabilize Z.

The nominal system of X, X, is

is a constant gain matrix, to

5, *(t) = gA,-x(t —d; (1) + Bu(t), t>0, ©

x(0) = 4(2), te[-h 0],

will be discussed first.
The following lemma is needed to deal with a
system with time-varying structured uncertainties.

Lemma 1 [19,20]: Given matrices Q= QT, H, FE
and R=R" with appropriate dimensions,

O+HF(OE+ETFT()HT <0

for all F(s) satisfying F (1)F(t)<R, if and only
if there exists an & >0 such that

O+e'HHT + ETRE <0.
3. STABILITY AND STABILIZATION

First, the nominal system, X, is discussed. The

following Lemma is extended from {11]. It solves the
problem of designing a stabilization controller for
systems with muitiple unknown time-varying delays.

Lemma 2: Given scalars 4, >0(i=1,---,m), the
nominal system X, with #(r)=0 and multiple
unknown time-varying delays, d;(f)>0(i=1,---,m),
satisfying (4) is asymptotically stable if there
exist P=PT >0, Z; =Z,~T >0 (@(=1,---,m), and any
N(i=0,1--,

m;j=1,---,m), such that the following matrix

appropriately dimensioned matrices

inequality holds:

H a+4A"™H 4, N,

O = AT -Z, 0 |<o, (7)
NT 0o -2z,
where
1T
H: 130 Nl N2 Nm 5
_AO Al A2 Amw

~
|

~

[l

o O
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Ay =mAy,, mAy, By Ao 1,
Nh =[h1N1 hz,Nz thm],
Zh = diag{—hlZl —h222 —hmZm},
Z_,=diagl-h2z' -m2Z;' - -h,Z,'},
N;=[N§; N[, NLT
T
Aom =4 4 4,1,
R=[R 0 - of.

Proof: Choose a candidate Lyapunov-Krasovskii
functional to be

V(x)=x" (O)Px(t)+ i jf’h L’ exT(s)Z,.x(s)dsda, (8)
. i=1 i o

where P=PT >0 and Z; =Z,~T >0(=1,--,m) are
to be determined. According to the Leibniz-Newton
formula, for j=1,---,m, and for any matrices N
(i=1,---,m), the following equation holds:

2 l:ixT (t—d, (t))Nl-J}
o ©)

t
1-d (1)

x |:x(t) —x(t~d;(6) - j x(s)}ds =0.

On the other hand, for any symmetric semi-positive
definite matrices with appropriate dimensions

[y (G )
X X
7 . .
. [ X(;)} xW X0
xO _|L70 1.1 M50, j=1,m,
~7 ~ W .
ECARE )

the following holds:
Ty h.xD ~f NI
o O X)) jt_djmgl (1 XD)gi (s 2 0,

(10)

where

T =1xT @) X" (¢ —dy () x" (¢ = dy () X (¢~ ., (D)].

Calculating the derivative of FV(x,) along the
solutions of X, and adding (9) and (10) for j=1, ---,
m, to it yields

I3

T
t—dj(t)gz (t,S)\Pg'z(l,S)dS,

Vi) =6 0Za0-2 |
7=l
(11)

where

Feo=[d© F©],

m m .
E=HA+ATHT + 43, | D 0,2, 45, + Y h; XD,
j=1 j=1
x N,
¥ = /
=l o L
Jo4

If 5<0and ¥; 20 (j=1:--,m), then V(x,)< —‘9||x(t)"2
for a sufficiently small positive number ¢ >0, which
ensures the asymptotic stability of £, [21]. Set

xW :szj‘.lN}", j=Lm, (12)

which implies that ¥ ;>0 (j=1---,m). Replacing

XYin = with (12) and applying the Schur comple-
ment ([22]) show that ® <0 implies = <0. So,
L, is asymptotically stable if (7) holds. O

Remark 1: The conditions in (7) are not .LMIs due
to the term Z, However, they can be expressed as
LMIs by the same method usedin[11]. The form of (7)
is aimed at using LMIs to find a state-feedback
controller that stabilizes the system.

Based on Lemma 2, we can derive a control law,

(5), to stabilize the nominal system X, as follow:
Theorem 1: Given scalars #; >0 (i=1,---,m), the

control law (5) stabilizes the nominal system 2, with

multiple unknown time-varying delays, d{¢) i=1, ---,

m, satisfying (4) if there exist L=1T >0, R;

RJT >0 (j=l,---,m), and any appropriately dimensioned

matrices Sy (i = 0,1---,m; j=1, --- ,m) and U such that
the following LMI holds:

[ Ty oy Hop
T
Mg, Ty +mRy - I,
T T
= 1_IOm I_Ilm . 1_Imm + hmRm
| Gy mG{ - h G;’
hyG{ hyG{ hyGL,
1aGo Gl G,
mGy, Gy - h,Gy |
WG, hG, h, G,
hG hG e h G
1 m 2 m m m < O, (13)
-mRy 0 0
0 —hRy 0
0 0 —-hmRmJ
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where

m
Tlgg = AgL + LA] +BU+UTB" + (4,8, + 57,47 ),

=

m

Top =X, 4,8y +L=So, k=1,
=

Hik=_Ski_Sl€’ i=1,"',m; szSm,

m
Go=L45 +UTB" +Y 50,47,
j=1

m
Gi=3S{A}, i=l-,m.
j=1

Moreover, a stabilizing controller is given' by
u(t) = UL x(1).

Proof: (7) implies that N;(i=1,--m) are negative-
definite. Thus Ny (i =1,---,m) are nonsingular. So, H
is nonsingular and

L 0 « 0

— S, S e S

H=g~'=|"0 70 o (14)
SOm Slm Sml

Pre- and post-multiply @ in (7) by diag{H’,
1,,1,} and diag{H,1,,
]m

written to

I}, respectively, where
is an mnxmn identity matrix. Then, (7) can be

Aﬁ‘l‘ﬁTAT ETAh FTNh
ATH -Z, 0 <o, (15)
NIH 0 -z,

where Ay in A and A, is replaced with Ay+BK.
Introducing the following changes to the variables

R =Z]'(j=1,m), U=KL
yields
Hoy oy -+ Ty
et aT < T T T | (16)
oy, I, - T,
and
mGy Gy h,,G,
HTa,=| MG G WG g
WG, G, - h,G,

Since
1=A"-H"=H"[R M Ny - Nu| (18)
then
AT N, =H" .[WN, N, - h,N,]
o 0 - 0]
WI 0 - 0
=0 Ml - 0
0 0 o hyl|

Taking the Schur complement of H T Ny and Z,,

we obtain (13). O
Remark 2: For given scalars 4, >0(i=1,---,m)

condition (13) is an LMI. Since they do not depend
on the derivative of the delays, dj(t) (=1, m),

but depend on the upper bounds on d;(#) (=1,
.--,m), these criteria are delay-dependent and rate-

independent.

Theorem 1 is now extended to a system with time-
varying structured uncertainties.

Theorem 2: Given scalars /#; >0 (i=1,---,m), the

control law (5) stabilizes system ¥ with time-
varying structured uncertainties and multiple
unknown time-varying delays, d,;(¢) (i=L2,---,m)
satisfying (4) if there exist L =1'>0, R = R]T >
0(j=1,--,m) and any appropriately dimensioned
matrices S (i=0,,---,m;j=1,---,m), U, and a scalar
A >0 such that the following LMI holds:

My Ty Oow mGy, mGy - h,Gy E'
T

Oy Ty - Thw KG, WG - h,G EL
T T

Mo Tw - wm G, G, - "G, Eo
nGy WGl - hGL &, @, - @, 0
Gy mGL v Gl O Oy - 0, 0
hm(_;g hmGlT hmGZ ®1Tm ®§m ®rmn 0

| E  E;, - E, O 0 - 0 Al

<0, (19)
where

Mgy =Tlgg + ADD7,
Oy = A DDT i=1, m;i <k <m,
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©,; =—hR, +AK*DD" i=1,---,m,

E,;= iEij,i:O,l,---,m,
J=

E=E,L+E,+EU.
Moreover, a stabilizing controller is given by u(¢) =
UL ().

Proof: Replacing 4;(j=0,1,---,m) and B in (13)

with 4, + DF()E;(j =0,1,---,m) and B+DF(Q)E,
respectively, we find that (13) for X is equivalent to

the following condition:

n+rLFr@r, +TLFT (nr, <0,

where
Fo=|E Ea Eo = Egy 0 - 0],
rd:[DT 0 0 D" hDT hmDT].

By Lemma 1, a sufficient condition guaranteeing (13)
for ¥ is that there exists a positive number A>0
such that

O+Arir, +A47r’r, <o. (20)

Applying the Schur complement shows that (20) is

equivalent to (19). d

Remark 3: There is an error in [4]. In that paper,
the delay-dependent and rate-independent conditions
were given as LMIs in Theorem 2 for g =1/

(i=1,2). In (28a) in the theorem, blocks of the
fourth, fifth, sixth, and seventh rows and columns
were deleted. That is, both S; and S, must be zero.
However, (28a) derived from (17), in which L = E,
Ly =E,, L, =E, by pre- and post- multiplying (17)
by AT and A (A=diag{Q, I, S|, S,,1} but not by
diag{Q,1} and S =57, S,=55"). Since ;. and
S, must be zero, this treatment is equivalent to

making all the blocks of the third and fourth rows and
columns in (17) zero and then deleting them, which

is clearly not correct. On the other hand, if either L,
or L, in (17) is non-zero, the corresponding bounded-

real-lemma representation of (17) cannot be extended
to make it delay-dependent and rate-independent. In

fact, it is clearly not correct that £| and £, are not
contained in (28) if there are uncertainties in 4, and

A,. So, the delay-dependent and rate-independent
conditions in [4] are not valid for a delay including

an uncertainty. Note that all the equation numbers
mentioned above are those in [4].

4. EXAMPLES

In this section, two examples are used to
demonstrate the effectiveness of the proposed method.

Example 1: Consider the uncertain system X
with m=1 and

00 -2 -05 0
AO: > A1= >B= P
01 0 -1 1

D:], E0:0.21, Elza], Eb:[0:|’

<

where a was 0.2 in [3] and 0 in [4].

In [3], Moon et al. considered this system with a
constant delay, and the upper bound on /4 that
stabilized the system was found to be 0.45. For a
system containing a fast time-varying delay, the upper
bound on /4 for which the system is stabilized by a
state-feedback controller was found to be 0.496 in [4]
and 0.489 in [1] for o =0. We obtained a value of
0.496 for o =0 by solving LMI (19} in Theorem 2.
Although this theorem yields the same upper bound
on h as [4], the conditions in the theorem are LMIs,
and no adjustment of parameters is needed. So, from a
computational viewpoint, the method in this paper is
superior to existing ones. In addition, when « =0.2,
the upper bound on /4 for which the system is
stabilized by a state-feedback controller was found to
be 0.451. However, the method of [4] cannot handle
this case.

Example 2: Consider the uncertain system X
with m=2 and

AO_-12 L _[06 —04) fo 0
o 1P o 0o P o —0s5)
1 0.16 0
B=| |, D=1I, Ey= ,
1 0 016

0 0 0.04 0 0
E] = N E2 = N Eb = B
0 0.04 0 0 0

This example is similar to Example 2 in [12]. For
h=max{h;}, the system can be stabilized if A<
i=1,2

0.1945 in [12]. However, solving LMI (19), it was
found that the system can be stabilized by (5) if
h<1.3303 and K =[-475.1 -1140]. In addition,
the upper bounds on A, are listed in Table 1 for

various /4. Note that the method of [4] cannot
handle this case.
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Table 1. Upper bounder on 4, for various A;.

hy 0.1 0.5 1.0

hy 1.94 1.85 1.68

K |[-0.720 —1.866]|[-1.665 —2.323]|[-50.79 —64.70]
n 1.2 1.3303 14

hy 1.52 1.3303 1.13

K ([-10.28 -19.62]| [-475.1 ~-1140] |[-30.40 —84.13]
hy 1.5 1.6 —

hy 0.73 0.22 —

K |[-146.6 —246.4]|[-174.9 —113.2] —

5. CONCLUSION
In this paper, free-weighting matrices were

employed to express the relationships between the
terms in the Leibniz-Newton formula; and LMI-based
delay-dependent and rate-independent stabilization
conditions were presented for systems with unknown
time-varying delays and time-varying structured
uncertainties. The advantages of these conditions are

that

parameters

they are entirely LMI-based and no tuning
are needed. Numerical examples

demonstrated the validity of the conditions.
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