• Title/Summary/Keyword: Stability-based

Search Result 8,389, Processing Time 0.042 seconds

Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function

  • Jafari, Ehsan;Marjanian, Ali;Solaymani, Soodabeh;Shahgholian, Ghazanfar
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.478-489
    • /
    • 2013
  • The controllability and stability of power systems can be increased by Flexible AC Transmission Devices (FACTs). One of the FACTs devices is Interline Power-Flow Controller (IPFC) by which the voltage stability, dynamic stability and transient stability of power systems can be improved. In the present paper, the convenient operation and control of IPFC for transient stability improvement are considered. Considering that the system's Lyapunov energy function is a relevant tool to study the stability affair. IPFC energy function optimization has been used in order to access the maximum of transient stability margin. In order to control IPFC, a Brain Emotional Learning Based Intelligent Controller (BELBIC) and PI controller have been used. The utilization of the new controller is based on the emotion-processing mechanism in the brain and is essentially an action selection, which is based on sensory inputs and emotional cues. This intelligent control is based on the limbic system of the mammalian brain. Simulation confirms the ability of BELBIC controller compared with conventional PI controller. The designing results have been studied by the simulation of a single-machine system with infinite bus (SMIB) and another standard 9-buses system (Anderson and Fouad, 1977).

The Effect of Suspension Stability on the Thermal Conductivity Enhancement of Water-based Au Nanofluids (물-기반 금나노유체의 분산안정성이 열전도도에 미치는 영향)

  • Choi, Tae Jong;Kim, Hyun Jin;Lee, Seung-Hyun;Park, Yong Jun;Jang, Seok Pil
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.111-115
    • /
    • 2016
  • This paper experimentally reports the effect of suspension stability on the thermal conductivity of water-based Au nanofluids. For this purpose, the water-based Au nanofluids are prepared by the one-step method called electro-chemical method with volume fraction of 0.0005%. The thermal conductivity of water-based Au nanofluids is measured from $22^{\circ}C$ to $42^{\circ}C$ using the transient hot wire method. To quantify the suspension stability of Au nanofluids, the suspension stability of nanofluids is evaluated using the in-house developed laser scattering system at a fixed wavelength of 632.8nm with the elapsed time. Based on the experimental results, the both thermal conductivity and suspension stability of water-based Au nanofluids are gradually decreased according to the time. These results experimentally show that the suspension stability of water-based Au nanofluids is the one of the important factor of thermal conductivity.

Stability Proof of NFL-FOO-based SMC : Part 5 (NFL-FOO에 기준한 SMC의 안정도 증명 : Part 5)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.985-987
    • /
    • 1998
  • This paper presents a stability proof for the nonlinear feedback linearization-full order observer-based sliding mode controller (NFL-FOO-based SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-ROO-based SMC : Part 6 (NFL-ROO에 기준한 SMC의 안정도 증명 : Part 6)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.988-990
    • /
    • 1998
  • This paper presents the stability proof of a nonlinear feedback linearization-reduced order observer-based sliding mode controller (NFL-ROO-based SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-O-based SMMFC : Part 7 (NFL-O에 기준한 SMMFC의 안정도 증명 : Part 7)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.991-993
    • /
    • 1998
  • This paper presents a stability proof for the nonlinear feedback linearization-observer-based sliding mode model following controller (NFL-O-based SMMFC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability of the classifier based on fuzzy similarity in generalized Lukasiewicz Structure

  • Sampo, J.;Luukka, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1324-1329
    • /
    • 2004
  • In this article we have tested stability of classifier based on fuzzy similarity in generalized Lukasiewicz structure. Two different tests for stability was made:In on test stability was checked respect to weight parameters and other test was carried out for idealvectors. Tests have made with three different classification problems.

  • PDF

Control Performance Comparison of Model-referenced and Map-based Control Method for Vehicle Lateral Stability Enhancement (차량 횡방향 안정성 향상을 위한 모델 참조 제어와 맵기반 제어 방법의 제어 성능 비교)

  • Yoon, Moonyoon;Baek, Seunghwan;Choi, Jungkwang;Boo, Kwangsuck;Kim, Heungseob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • This study proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. The performances of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with low friction coefficient. The simulation results show that map-based control provides better stability than model-referenced control.

Robust Optimal Bang-Bang Controller Using Lyapunov Robust Stability Condition (Lyapunov 강인 안정성 조건을 이용한 강인 최적 뱅뱅 제어기)

  • Park Young-Jin;Moon Seok-Jun;Park Youn-Sik;Lim Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2006
  • There are mainly two types of bang-bang controllers for nominal linear time-invariant (LTI) system. Optimal bang-bang controller is designed based on optimal control theory and suboptimal bang-bang controller is obtained by using Lyapunov stability condition. In this paper, the suboptimal bang-bang control method is extended to LTI system involving both control input saturation and structured real parameter uncertainties by using Lyapunov robust stability condition. Two robust optimal bang-bang controllers are derived by minimizing the time derivative of Lyapunov function subjected to the limit of control input. The one is developed based on the classical quadratic stability(QS), and the other is developed based on the affine quadratic stability(AQS). And characteristics of the two controllers are compared. Especially, bounds of parameter uncertainties which theoretically guarantee robust stability of the two controllers are compared quantitatively for 1DOF vibrating system. Moreover, the validity of robust optimal bang-bang controller based on the AQS is shown through numerical simulations for this system.

Power System Voltage Stability Classification Using Interior Point Method Based Support Vector Machine(IPMSVM)

  • Song, Hwa-Chang;Dosano, Rodel D.;Lee, Byong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.238-243
    • /
    • 2009
  • This paper present same thodology for the classification of power system voltage stability, the trajectory of which to instability is monotonic, using an interior point method based support vector machine(IPMSVM). The SVM based voltage stability classifier canp rovide real-time stability identification only using the local measurement data, without the topological information conventionally used.

A Support Vector Machine Based Voltage Stability Classifier (SVM 기반 전압안정도 분류 알고리즘)

  • Dosano, Rodel D.;Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.477-478
    • /
    • 2007
  • This paper proposes a new concept of support vector machine (SVM) based voltage stability classifier using time-series phasor data. The classifier, based on a linear SVM, can provide very effective signals for identification of long-term voltage stability. In addition, the SVM output is applicable as an voltage stability indicator when an amount of corrective controls are performed just to make the system reach around at the maximum deliverable point.

  • PDF