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Abstract

This paper presents a methodology for the classification of power system voltage stability, the trajectory of which to
instability is monotonic, using an interior point method based support vector machine (IPMSVM). The SVM based volt-
age stability classifier can provide real-time stability identification only using the local measurement data, without the
topological information conventionally used.
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1 Introduction

With the advent of deregulated energy markets and the
growing desire to fully utilize existing transmissions and
infrastructures, power system stability is becoming com-
plex and critical. This economical pressure on an electrical
market forces the operation of power systems and compo-
nents to the limits of capacity, and system conditions can
be more exposed to instability due to greater uncertainty in
day to day system operations and the increase in the num-
ber of critical components. Thus, the evolution of electric
system operation schemes toward the deregulation necessi-
tates more reliable security monitoring.

The integrated SCADA/EMS system is crucial for the
current power system operation, and its capability has
greatly improved during recent years. Obviously, how-
ever, the SCADA/EMS system has a difficulty to capture
dynamic responses after severe disturbances occur. To
compensate for this difficulty, phasor measurement units
(PMU) was devised and proposed in the power engineer-
ing field [1], which fulfills the requirement of real-time
monitoring for the view of power system dynamic re-
sponses. Time series data from the fast measurement de-
vices can provide the insight of system dynamics to the op-
erators. Potentially, in addition, they can provide system
stability identification through adequate data manipulation.
Using synchronized PMU data with time tags from GPS
(Global Positioning Systems), concepts of wide area con-
trol/protection systems (WACS/WAPS) were proposed [2,

3], which have a complete dynamic view through the sys-
tems and provide an appropriate control action in an emer-
gency state.

This paper proposes a new methodology for real-time
local voltage stability classification with a support vector
machine (SVM). SVM is said to provide an excellent per-
formance in binary classification in a multi-dimensional
feature space [4-6]. The approach of this paper directly
uses time-series data of phasor measurement on system tra-
jectories in insecure states. From a set of data samples in
a moving window, in this paper, a feature vector is gen-
erated with a procedure for letting the vector contain rel-
ative information from the pre-fault condition, and from
the generated feature vectors as the learning samples, this
paper adopts an interior point method based support vec-
tor machine (IPMSVM) to determine the optimal separat-
ing hyperplane, which will be then used for unseen fea-
ture vectors. This paper also depicts the solution technique
of IPMSVM, basically using the interior point method for
nonlinear programming problems in [7], and explains a
numerical example with Jeju island power system [8] to
show that the classifier can provide very effective signals
for long-term voltage stability identification.

2 IPM based support vector machine

This section explains the formulation and solution tech-
nique for the IPMSVM. SVM, to find an optimal hyper-
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plane in the hyperthesis space separting the feature vectors
into two classes, can be formulated as a quadratic program-
ming (QP) problem with linear constriants. When applying
interior point methods to QP problems, the total iteration
number does not severely depend on the increased problem
size [9].

2.1 Formulation

This section presents the SVM formulation and the so-
lution technique used in the paper. Suppose we have N
training data points {(x1, y1), (x2, y2),. . . . . . , (xN , yN )}
where xi ∈ Rd and yi ∈ {±1}, where xi denotes the i-th
feature vector and yi is the corresponding class (positive or
negative class). For non-separable cases, the optimization
formulation of SVM, to find out the hyperplane (w·x+b=0)
maximizing the margin between the two classes, can be de-
scribed as follows:

min 1
2wT w + C

∑N

i=1 ξi

s.t. yi(w · xi + b) + ξi ≥ 1, 1 ≤ i ≤ N

ξi ≥ 0, 1 ≤ i ≤ N

(1)

where ξi is the slack variable for the i-th sample; C is the
weighting factor for penalizing ξis in the objective func-
tion. The first term of the objective function is to maximize
the margin between the two classes.

The dual problem of (1) can be formulated as follows
[5]:

max
∑N

i=1 αi −
1
2

∑N

i=1

∑N

j=1 αiαjyiyjxi · xj

s.t. 0 ≤ αi ≤ C, 1 ≤ i ≤ N∑N

i=1 αiyi = 0

(2)

where αi is the Lagrangian multiplier of the i-th inequality
constraint in (1). Instead of the primal problem, the dual
problem is usaully used for SVM solutions, because its ap-
plicability to nonlinear kernels is better. For a nonlinear
SVM classifier, a nonlinear kernel, K(xi, xj), needs to be
substituted for xi · xj in (2). Support vectors by defini-
tion are those feature vectors that lie on the binding con-
straints and hence have positive Lagrangian multipliers, so
each class can have several support vectors and they ulti-
mately determine the optimal hyperplane.

After obtaining the optimal solution of (1), the classi-
fication of the output classes with an input vector x can be
determined by:

f(x) = sgn (w · x + b)

w =
∑N

i=1 αiyixi

(3)

From (3), it can be known that only those constraints cor-
responding to the support vectors could affect the normal
vector calculation. This relation can be obtained from the
optimality condition of the Lagrangian function.

2.2 Solution Technique
For implementation of SVM, in this paper, an interior

point method (IPM) [7] is applied as the solution technique.
For the dual problem of (2), after introducing slack vari-
ables sL and sU for converting the inequality constraints
into equility ones and applying log barrier penalty func-
tions for them, Lagrangian function can be obtained as fol-
lows:

L = f(α) − zT (α − sL) − wT (α + sU − C) − λ yT α

−μ
∑N

i=1(ln sLi + ln sUi)

f(α) = −
∑N

i=1 αi + 1
2

∑N

i=1

∑N

j=1 αiαjyiyjxi · xj

(4)
where z and w are Lagrangian multipliers for the converted
lower and upper inequality constraints; λ is a scalar La-
grangian multiplier for the equality constraint; μ denotes
barrier parameter.

The KKT first-order necessary optimality condition of
the Lagrangian function can be derived as follows:

Lα ≡ ∇f(α) − z − w − λy = 0
Lλ ≡ yT α = 0
Lz ≡ α − sL = 0
Lw ≡ (α + sU − C)
LsL

≡ Ze − μS−1
L e = 0

LsU
≡ We + μS−1

U e = 0

(5)

where SL and SU are diagonal matrices whose diagonal el-
ements are the elements of sL and sU , respectively; Z and
W are diagonal matrices whose diagonal elements are the
elements of z and w, respectively; e is the vector whose all
elements are 1. For easy manipulation of the KKT first-
order condition, the last two equations in (5) are changed
into the following equations.

LsL
≡ SLZe − μe = 0

LsU
≡ SUWe + μe = 0

(6)

From a given initial guess for the variables in (4), City-
placeNewton method is applied to find a solution satisfying
(5). For this purpose, this paper uses the reduced correction
equations as follows:[

H y

yT 0

] [
Δα

Δλ

]
= −

[
R(·)
yT α

]

H(·) = −∇2f(α) + S−1
U W − S−1

L Z

R(·) = −∇f(α) + λy + μ(S−1
L e − S−1

U e)

(7)

Other variable correction vectors are calculated with the
following equations:

ΔsL = Δα + Lo
z

ΔsU = −Δα − Lo
w

Δz = −S−1
L Z(Δα + Lo

z) + S−1
L Lo

sL

Δw = S−1
U W (Δα + Lo

w) − S−1
U Lo

sU

(8)

where Lo
z , Lo

w, Lo
sL

and Lo
sU

are vectors with intermediate
numerical values forLz, Lw, LsL

and LsU
, respectively.



After determining primal and dual step lengths not to lin-
early violate the inequality constraints and leave the room
for the variables in the next iteration, primal and dual
varaibles are updated with the correction vectors.

The procedure of IPMSVM for the optimal solution can
be outlined as follows:

Step 1: Initialize the primal and dual variables, and set k
to 1.

Step 2: Compute the complementary gap, GC = zT sL −
wT sL, and the residual of the equality constraints of
(2), yT α. If GC < ε1 and yT α < ε2, then stop;
otherwise, go to Step 3.

Step 3: Set the barrier parameter, μ, as follows:

μ = c
GC

2nC

(9)

where nC is the number of inequality constraints
(=2N), and c (0<c<1) is the centering parameter.

Step 4: Construct the linear system of (7) and solve the
correction vector for (α, sL, sU ; λ, z, w).

Step 5: Determine the primal and dual step length,
(tP , tD), for the next solution not to violate any in-
equality constraints linearly.

Step 6: Update the primal and dual variables using the
correction vector and (tP , tD) as follows:

⎡
⎢⎣

α(k+1)

s
(k+1)
L

s
(k+1)
U

⎤
⎥⎦ =

⎡
⎢⎣

α(k)

s
(k)
L

s
(k)
U

⎤
⎥⎦ + tP

⎡
⎣ Δα

ΔsL

ΔsU

⎤
⎦ (10)

⎡
⎣ λ(k+1)

z(k+1)

w(k+1)

⎤
⎦ =

⎡
⎣ λ(k)

z(k)

w(k)

⎤
⎦ + tD

⎡
⎣ Δλ

Δz

Δw

⎤
⎦ (11)

Step 7: k ← k + 1, and go to Step 2.

In (9), c is usually set to 0.1, and then GC in the next
iteration expects to be reduced ten times. Also μ gets lower
as iteration goes by, and closer to a very small value (below
10−8 around the solution. The main computational burden
stems from the calculation of the correction vector of the
reduced system as in (7), the dimension of which is N + 1.
Because the system matrix of (7) is compact, it seems to
be not possible to apply sparse techniques. However, the
total iteration number, when applying IPM, one of poly-
nomial time algorithms, tends not to change as the system
size increases, and the computational time is proportional
to the total iteration number. In this paper IPMSVM has
been developed in Matlab.

3 Feature vector generation for voltage stability
classification

In the literature, one can find several references that
apply artificial intelligence technologies for the estima-
tion of active power margin, which are also based on
SCADA/EMS solution. Different from these approaches,
this paper proposes a new methodology that directly uses
time-series data from local measurements. The basic idea
of the methodology is that time-trajectories for stable cases
and those for unstable cases can be differentiated.

In this paper, we assume that the parameters, locally
monitored by PMU devices, are active power and bus volt-
age (P and V ) at the pilot substation. The two parame-
ters are usually used for the conventional voltage stability
analysis [10-12]. The sampling frequency needs to be fast
enough to capture system responses of long-term dynam-
ics. A high sampling rate can contain the system response
from short-term and long-term dynamics, but it increases
the dimension of the feature space.

To convert time-series data into feature vectors, the
concept of moving window is used. A window contains
a certain number of samples, and the window slides along
the time axis. The data points in a moving window are the
basis for classification of voltage stability. A window at a
specific time includes M -1 previous data points and a cur-
rent data point, where M is the size of the window. The
dimension of the feature space is 2M , because each point
has values of P and V . At the beginning of classification,
the classification output is provided after M samplngs. In
this paper, a preconditioning of the input data is performed
for generation of feature vectors. Assuming that P and V

values at the pre-faulted condition is stored, the precondi-
tioning is done using the following formula:

P k = (Po − Pk) /Po

V k = (Vo − Vk) /Vo
(12)

where the subscripts o and k represent the initial (pre-fault)
and the k-th sample. The normalized parameters, Pk and
Vk, are more differentiable by classification algorithms, be-
cause they include relative information from the initial val-
ues.

For classifying a continuous sequence of generated fea-
ture vectors, several algorithms [12] can be employed. In
this paper, IPMSVM is adopted as the classifier. SVM is
powerful for binary classification in a multi-dimensional
feature space and constructs an optimal decision hypothe-
sis by holding the empirical risk fixed and minimizing VC
confidence [4-6].



4 Numerial results

This section reports the results applying the SVM based
voltage stability classifier to ’05 Jeju island system in the
KEPCO (Korea Electric Power Corporation). The total
load of the system is 490.9 [MW] and 30.9% of the load
is supplied from the main system through two HVDC lines
[8]. The HVDC lines has the isochronous control which ac-
tually regulates the system frequency of the island system
after disturbances by increase or decrease in the injected
current through them. Thus, in cases where a large portion
of generation in the island system is tripped off, a quick
increase in active power injection is followed due to the
isochronous control. Then, unless reactive power is suffi-
ciently and quickly supported for the system to maintain
loadability for the load restoration level, the system may
experience voltage collapse.

This paper assumes that a local measurement device
such as PMU is equipped at a substation to capture time-
series data for P and V . The pilot bus for monitoring is
’Shin JEJU’. To obtain time series data, in this paper, TSAT
program [14] is applied, and in the time-domain simula-
tion, all the loads are converted by the ULTC based load
restoration model and the HVDC controls are modeled with
the user defined control (UDC) blocks in TSAT. During
simulation, the network-side voltage and active power in-
jection to the substation are stored for application of the
proposed classifier.

In this study, diverse scenarios are simulated, to ob-
tain stable and unstable data as learning samples, including
outages of lines and local generators and increase in local
loads for enough data sets. In preparation of data sets, the
main idea in selection of major disturbances is to have the
classifier acquire diverse and significant information in the
learning process. Expertise in voltage stability is needed
in determination of disturbance sets as a part of classifier
modeling. Most data obtained in time-domain simulation
were stable, so this results in much stable data and less
for unstable data. The prepared learning samples, conse-
quently, are more biased in positive than negative class and
hence this might cause difficulties in further classification
of unseen data.

In this study, 480 training data are prepared totally; 115
data of them are unstable, and used to verify the capability
of the voltage stability classifier. All unstable training data
with the equal number of randomly selected stable data
were first adopted to train the classifier. Then, additional
30 data sets which are randomly chosen from the remain-
ing stable class are incorporated into the previous learning
samples and this procedure is repeatedly done until no un-
used training data are left. In this way, the characteristics
of the SVM classifier are evaluated using different number
of training data and comparative studies with other learning
algorithms are performed.

The test data used in this study are generated from a

typical scenario where the system is initially can be con-
sidered stable after applying the contingency but turns into
unstable. That is, a time-series is created applying the sce-
nario, including 128 stable and 35 unstable data points, and
then several training data according to a moving window
are prepared. The scenario is taken apart from other sce-
narios employed for the training data.

Using IPMSVM, developed in this paper, with linear
and Gaussian kernel function, the training procedure was
performed. For penalty parameter of SVM, C, various val-
ues are applied; C for the linear kernel function ranges
from 10 5000 and for Gaussian kernel function from 2000
to above. Selecting C in SVM modeling is such an impor-
tant part as choosing the kernel function and the number of
training data. Since the number of unstable data for training
is not so much as that of stable data in this study, it is ex-
pected that SVM solutions are affected by settings of C. In
the authors’ experiences with the classifier, solutions with
linear kernel are very dependent on the number of training
data, while those with Gaussian kernel are closely related
to both the number of training data and C parameter.

The parameters for training are P and V and both of
them contribute in the detection of voltage stability classi-
fication. Since the voltage profiles of the test system are
well-maintained, active power load is more sensitive to the
system disturbances compared to the voltage magnitude in
this study. These facts could be found in some test scenar-
ios where the system is unstable but does not experience
very low voltage profile. In Fig. 1 and 2, time-series data
for P and V are illustrated, generated by a voltage unstable
scenario. From the figures, it can be known that before the
system becomes unstable, the system tries to recover volt-
age profile by ULTC actions but becomes more stressed by
the load restoration action.
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Fig. 1 Time trajectory of P for the performance test
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Fig. 2 Time trajectory of V for the performance test
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Fig. 3 SVM output for the voltage unstable case

Fig. 3 shows the SVM output for the test data. As
the system starts to respond after the contingency, the
SVM output changes noticeably. From the figure, one can
roughly say that the larger the magnitude of SVM output is
in positive, the more stable the system is. In the authors’
experience, also, the severity of the disturbance on local
voltage stability can be viewed from the SVM output; of
stable cases, the more severe the disturbance is, the closer
the SVM output is to the reference axis. Thus, SVM out-
put can be used as an auxiliary signal because it is capable
of tracking the direction of system responses in terms of
voltage stability.

To observe the responses of the SVM output when con-
trol actions are applied, an adequate control of load shed-
ding to save the system for the unstable case was con-
ducted. The timing of load shedding action is one of im-
portant factors in determination of control strategies. In the
case, if enough load shedding is applied before the magni-
tude SVM classifier output approaches the reference axis,
the system could be back to a stable trajectory. The cor-
rective control, as shown in Fig. 4, keeps the SVM output
positive. The SVM output jumps rapidly to a much higher
value immediately after applying the load shedding and
then gets down and settles around a positive steady value.
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Fig. 4 SVM output when applying load shedding control
for stabilization

A comparison study is done on the performance of
IPMSVM with Multi-Layered Perceptrons (MLP) models.
In this study, IPMSVM with linear (IPMSVM1) and Gaus-
sian kernel (IPMSVM2) functions, Multi-Layered Percep-
trons models (MLP1 and MLP2) with 5 and 10 hidden lay-
ers. For the classifiers, the same training and testing data
sets are applied. In Table 1, detection and false dismissal
rate are shown for each classifier when the number of train-
ing data is 480. Detection rate, RD, is the ratio of the sta-
ble test data that have been correctly classifier and false
dismissal rate is 1-RD. For this configuration, IPMSVM2
have a best performance in terms of classification; the max-
imum detection rate that can be achieved using MLPs in
this study is 0.9632, but that using IPMSVM2 is 1. In Fig.
5, detection rates of the classifiers with 300 and more train-
ing samples are illustrated. On the early stage of the graph,
an important set of data from the boundaries of the posi-
tive class have not yet been included. The detection rate
of IPMSVM2 gets improved after adding the appropriate
positive class in the training data.

Table 1. Performance comparison with other classifiers
Detection False dismissal number of

rate rate traning data
MLP1(a=5) 0.9632 0.0368 480

MLP2(a=10) 0.9632 0.0368 480
IPMSVM1 0.9387 0.0613 480
IPMSVM2 1.0000 0.0000 480

In the voltage stability classification, the ease of tuning
the classifier and the consistency of results with unbalance
training data are important factors for accurate detection. In
selection of classifier, the compensation of data over-fitting,
which is implicit in the nature of the problem, should be
considered as one of major priorities. For power system
application, most of the data available are for stable cases,
so the generalization ability of SVM with limited resources
for training fits this type of classification.
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5 Conclusion

This paper presents a new methodology for real-time
power system voltage stability classification using the sup-
port vector machine based on an interior point method.
When applying IPM, the total number of iteration is not
seriously affected by the increase in the system size, which
depends on the number of samples for SVM. For feature
vector generation, the classifier directly uses sets of time
series data, which can be obtained by local measurement on
system responses, with the simple manipulation to increase
the relative information. The test results show that the clas-
sifier can offer an effective signal for long-term voltage sta-
bility identification based on real-time local measurements.
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