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Abstract

This paper presents a methodology for the classification of power system voltage stability, the trgjectory of which to
instability is monotonic, using an interior point method based support vector machine (IPMSVM). The SVM based volt-
age stability classifier can provide rea-time stability identification only using the local measurement data, without the

topological information conventionally used.
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1 Introduction

With the advent of deregulated energy markets and the
growing desire to fully utilize existing transmissions and
infrastructures, power system stability is becoming com-
plex and critical. Thiseconomical pressure on an electrical
market forces the operation of power systems and compo-
nents to the limits of capacity, and system conditions can
be more exposed to instability dueto greater uncertainty in
day to day system operations and the increase in the num-
ber of critical components. Thus, the evolution of electric
system operation schemes toward the deregulation necessi-
tates more reliable security monitoring.

The integrated SCADA/EMS system is crucial for the
current power system operation, and its capability has
greatly improved during recent years. Obviously, how-
ever, the SCADA/EMS system has a difficulty to capture
dynamic responses after severe disturbances occur. To
compensate for this difficulty, phasor measurement units
(PMU) was devised and proposed in the power engineer-
ing field [1], which fulfills the requirement of rea-time
monitoring for the view of power system dynamic re-
sponses. Time series data from the fast measurement de-
vices can providethe insight of system dynamicsto the op-
erators. Potentially, in addition, they can provide system
stability identification through adequate data manipulation.
Using synchronized PMU data with time tags from GPS
(Globa Positioning Systems), concepts of wide area con-
trol/protection systems (WACS/WAPS) were proposed [2,
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3], which have a complete dynamic view through the sys-
tems and provide an appropriate control action in an emer-
gency state.

This paper proposes a new methodology for real-time
local voltage stability classification with a support vector
machine (SVM). SVM is said to provide an excellent per-
formance in binary classification in a multi-dimensional
feature space [4-6]. The approach of this paper directly
usestime-series data of phasor measurement on system tra-
jectories in insecure states. From a set of data samplesin
a moving window, in this paper, a feature vector is gen-
erated with a procedure for letting the vector contain rel-
ative information from the pre-fault condition, and from
the generated feature vectors as the learning samples, this
paper adopts an interior point method based support vec-
tor machine (IPMSVM) to determine the optimal separat-
ing hyperplane, which will be then used for unseen fea-
ture vectors. This paper also depicts the solution technique
of IPMSVM, basically using the interior point method for
nonlinear programming problems in [7], and explains a
numerical example with Jeju island power system [8] to
show that the classifier can provide very effective signals
for long-term voltage stability identification.

2 |PM based support vector machine

This section explainsthe formul ation and solution tech-
nique for the IPMSVM. SVM, to find an optimal hyper-



plane in the hyperthesis space separting the feature vectors
into two classes, can be formulated as a quadrati c program-
ming (QP) problem with linear constriants. When applying
interior point methods to QP problems, the total iteration
number does not severely depend on the increased problem
size[9].

2.1 Formulation

This section presents the SYM formulation and the so-
lution technique used in the paper. Suppose we have N
training data points {(x1, y1), (X2, Y2)-----. , Xy YN)}
where x; € R? and y; € {£1}, where x; denotes the i-th
feature vector and y; isthe corresponding class (positive or
negative class). For non-separable cases, the optimization
formulation of SVM, to find out the hyperplane (w-x+b=0)
maximizing the margin between the two classes, can bede-
scribed as follows:

min %wTw +C Zf\il &i
st. yilw-z;+b)+&>1,
& =20, 1<i<N

1<i<N (1)

where &; is the dack variable for the i-th sample; C is the
weighting factor for penalizing &;s in the objective func-
tion. Thefirst term of the objective functionisto maximize
the margin between the two classes.

The dual problem of (1) can be formulated as follows

[5]:
<i< @

where «; isthe Lagrangian multiplier of thei-th inequality
constraint in (1). Instead of the primal problem, the dual
problem is usaully used for SVM solutions, because its ap-
plicability to nonlinear kernels is better. For a nonlinear
SVM classifier, anonlinear kernel, K (z;, x;), needsto be
substituted for «; - «; in (2). Support vectors by defini-
tion are those feature vectors that lie on the binding con-
straints and hence have positive Lagrangian multipliers, so
each class can have severa support vectors and they ulti-
mately determine the optimal hyperplane.

After obtaining the optimal solution of (1), the classi-
fication of the output classes with an input vector x can be
determined by:

f(x) =sgn(w-z+Db) 3
w = Zfil QYT &
From (3), it can be known that only those constraints cor-
responding to the support vectors could affect the normal
vector calculation. This relation can be obtained from the
optimality condition of the Lagrangian function.
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2.2 Solution Technique
For implementation of SVM, in this paper, an interior
point method (IPM) [ 7] isapplied as the solution technique.
For the dual problem of (2), after introducing slack vari-
ables sy, and sy for converting the inequality constraints
into equility ones and applying log barrier penalty func-
tions for them, Lagrangian function can be obtained as fol-
lows:
L=fla) 2" (a—sp)—wl(a+sy—C)=AyTa
—u Zf\il (Insg; + Insy;)
fla) == ai+ 330, Y8, aiagyiym - @ @
4
where zand w are Lagrangian multipliersfor the converted
lower and upper inequality constraints; \ is a scalar La
grangian multiplier for the equality constraint; ;. denotes
barrier parameter.
The KKT first-order necessary optimality condition of
the Lagrangian function can be derived as follows:

Lo=Vfla)—z—w—-Ay=0

Ly=yTa=0
L.,=a—s, =0
L,=(a+sy—-0C) ®)

Ls, =Ze—pS;le=0
Ly, =We+ ,uSEle =0

where Sy, and Sy are diagonal matrices whose diagonal el-
ements are the elements of sy, and sy, respectively; Z and
W are diagonal matrices whose diagonal elements are the
elements of zand w, respectively; eis the vector whose all
elements are 1. For easy manipulation of the KKT first-
order condition, the last two equations in (5) are changed
into the following equations.

L, =5 Ze—pe=0 ©6)
L,, =SyWe+pe=0

From agiven initial guessfor the variablesin (4), City-
placeNewton method is applied to find a solution satisfying
(5). For this purpose, this paper usesthe reduced correction
equations as follows:

H vy A« R(-)
{yT OHM}:_[«UT@
H() = -VZf(a) + S;'W - 5712 )
R(:) = =Vf(a) + Ay +u(S;'e - Si'e)
Other variable correction vectors are calculated with the
following equations:

Asp, = Aa+ LS
Asy = —Aa — LS, ®)
Az=-S7"Z(Aa+ L2) +S;'LY,

Aw = S;'W(Aa + L

w

—1l7o
)_ SU LSU

where L9, L2

w?

numerical values forL,, L

L and L7, are vectors with intermediate
LsL and Ligis respGCUde

w?
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After determining primal and dual step lengths not to lin-
early violate the inequality constraints and leave the room
for the variables in the next iteration, primal and dua
varaibles are updated with the correction vectors.

The procedure of IPMSVM for the optimal solution can
be outlined as follows:

Step 1: Initialize the primal and dual variables, and set k
tol.

Step 2: Compute the complementary gap, Go = 2”sy, —
w’'s, and the residual of the equality constraints of
), yTa. If Go < 1 and yTa < e, then stop;
otherwise, go to Step 3.

Step 3: Set the barrier parameter, ., asfollows:

Ge
2710

©)

where n¢ is the number of inequality constraints
(=2N), and ¢ (0<c<1) isthe centering parameter.

p=c

Step 4: Construct the linear system of (7) and solve the
correction vector for (o, sp, su; A, z, w).

Step 5: Determine the prima and dual step length,
(tp,tp), for the next solution not to violate any in-
equality constraints linearly.

Step 6: Update the primal and dual variables using the
correction vector and (¢p, tp) asfollows:

[ o k+1)

a®) Aa
5(Lk+1) = s(k) +tp | Asp, (20)
S§Jk+1) 886) Asy |
[ A(k+1) A(k) AN ]
Z(k+1) ] = { 2k | +tp [ Az (12)
wk+D) w® Aw

Step 7: k — k4 1, and go to Step 2.

In (9), cisusualy set to 0.1, and then G¢ in the next
iteration expectsto be reduced ten times. Also 1 getslower
asiteration goes by, and closer to avery small value (below
108 around the solution. The main computational burden
stems from the calculation of the correction vector of the
reduced system asin (7), the dimension of whichis N + 1.
Because the system matrix of (7) is compact, it seems to
be not possible to apply sparse techniques. However, the
total iteration number, when applying IPM, one of poly-
nomial time algorithms, tends not to change as the system
Size increases, and the computational time is proportional
to the total iteration number. In this paper IPMSVM has
been developed in Matlab.
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3 Featurevector generation for voltage stability
classification

In the literature, one can find several references that
apply artificial intelligence technologies for the estima-
tion of active power margin, which are aso based on
SCADA/EMS solution. Different from these approaches,
this paper proposes a new methodology that directly uses
time-series data from local measurements. The basic idea
of the methodology isthat time-trgjectoriesfor stable cases
and those for unstable cases can be differentiated.

In this paper, we assume that the parameters, locally
monitored by PMU devices, are active power and bus volt-
age (P and V) at the pilot substation. The two parame-
ters are usually used for the conventional voltage stability
analysis[10-12]. The sampling frequency needs to be fast
enough to capture system responses of long-term dynam-
ics. A high sampling rate can contain the system response
from short-term and long-term dynamics, but it increases
the dimension of the feature space.

To convert time-series data into feature vectors, the
concept of moving window is used. A window contains
a certain number of samples, and the window slides along
the time axis. The data pointsin a moving window are the
basis for classification of voltage stability. A window at a
specific time includes M -1 previous data points and a cur-
rent data point, where M is the size of the window. The
dimension of the feature space is 2M, because each point
has values of P and V. At the beginning of classification,
the classification output is provided after M samplngs. In
this paper, a preconditioning of the input dataiis performed
for generation of feature vectors. Assuming that P and V/
values at the pre-faulted condition is stored, the precondi-
tioning is done using the following formula:

Bk:(Po_Pk)/Po

Ve = (Vo — Vi) Vo (12)

where the subscripts o and k represent the initial (pre-fault)
and the k-th sample. The normalized parameters, P, and
Vi, aremoredifferentiable by classification algorithms, be-
cause they include relative information from theinitial val-
ues.

For classifying a continuous sequence of generated fea-
ture vectors, several algorithms [12] can be employed. In
this paper, IPMSVM is adopted as the classifier. SVM is
powerful for binary classification in a multi-dimensional
feature space and constructs an optimal decision hypothe-
sis by holding the empirical risk fixed and minimizing VC
confidence [4-6].



4 Numerial results

This section reportsthe results applying the SVM based
voltage stability classifier to '05 Jeju island system in the
KEPCO (Korea Electric Power Corporation). The total
load of the system is 490.9 [MW] and 30.9% of the load
is supplied from the main system through two HVDC lines
[8]. TheHVDC lineshastheisochronouscontrol which ac-
tually regulates the system frequency of the idand system
after disturbances by increase or decrease in the injected
current through them. Thus, in cases where a large portion
of generation in the idand system is tripped off, a quick
increase in active power injection is followed due to the
isochronous control. Then, unless reactive power is suffi-
ciently and quickly supported for the system to maintain
loadability for the load restoration level, the system may
experience voltage collapse.

This paper assumes that a local measurement device
such as PMU is equipped at a substation to capture time-
series data for P and V. The pilot bus for monitoring is
"Shin JEJU’. To obtain time series data, in this paper, TSAT
program [14] is applied, and in the time-domain simula-
tion, al the loads are converted by the ULTC based load
restoration model and the HVDC controls are model ed with
the user defined control (UDC) blocks in TSAT. During
simulation, the network-side voltage and active power in-
jection to the substation are stored for application of the
proposed classifier.

In this study, diverse scenarios are simulated, to ob-
tain stable and unstable data as learning samples, including
outages of lines and local generators and increase in local
loads for enough data sets. In preparation of data sets, the
main ideain selection of major disturbancesis to have the
classifier acquire diverse and significant information in the
learning process. Expertise in voltage stability is needed
in determination of disturbance sets as a part of classifier
modeling. Most data obtained in time-domain simulation
were stable, so this results in much stable data and less
for unstable data. The prepared learning samples, conse-
guently, are more biased in positive than negative class and
hence this might cause difficulties in further classification
of unseen data.

In this study, 480 training data are prepared totally; 115
data of them are unstable, and used to verify the capability
of the voltage stahility classifier. All unstable training data
with the equal number of randomly selected stable data
were first adopted to train the classifier. Then, additional
30 data sets which are randomly chosen from the remain-
ing stable class are incorporated into the previous learning
samples and this procedure is repeatedly done until no un-
used training data are left. In this way, the characteristics
of the SVM classifier are evaluated using different number
of training dataand comparative studieswith other learning
algorithms are performed.

The test data used in this study are generated from a
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typical scenario where the system is initially can be con-
sidered stable after applying the contingency but turnsinto
unstable. That is, atime-seriesis created applying the sce-
nario, including 128 stable and 35 unstable data points, and
then several training data according to a moving window
are prepared. The scenario is taken apart from other sce-
narios employed for the training data.

Using IPMSVM, developed in this paper, with linear
and Gaussian kernel function, the training procedure was
performed. For penalty parameter of SVM, C, variousval-
ues are applied; C for the linear kernel function ranges
from 10 5000 and for Gaussian kernel function from 2000
to above. Selecting C' in SVM modeling is such an impor-
tant part as choosing the kernel function and the number of
training data. Sincethe number of unstable datafor training
is not so much as that of stable data in this study, it is ex-
pected that SVM solutions are affected by settings of C. In
the authors' experiences with the classifier, solutions with
linear kernel are very dependent on the number of training
data, while those with Gaussian kernel are closely related
to both the number of training dataand C' parameter.

The parameters for training are P and V' and both of
them contribute in the detection of voltage stability classi-
fication. Since the voltage profiles of the test system are
well-maintained, active power load is more sensitive to the
system disturbances compared to the voltage magnitude in
this study. These facts could be found in some test scenar-
ios where the system is unstable but does not experience
very low voltage profile. In Fig. 1 and 2, time-series data
for P and V areillustrated, generated by avoltage unstable
scenario. From the figures, it can be known that before the
system becomes unstable, the system tries to recover volt-
age profile by ULTC actions but becomes more stressed by
the load restoration action.
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Fig. 1 Time trajectory of P for the performancetest
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Fig. 2 Time trgectory of V for the performance test
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Fig. 3 SVYM output for the voltage unstable case

Fig. 3 shows the SVM output for the test data. As
the system starts to respond after the contingency, the
SVM output changes noticeably. From the figure, one can
roughly say that the larger the magnitude of SVM output is
in positive, the more stable the system is. In the authors
experience, also, the severity of the disturbance on local
voltage stability can be viewed from the SVM output; of
stable cases, the more severe the disturbanceiis, the closer
the SVM output is to the reference axis. Thus, SYM out-
put can be used as an auxiliary signal because it is capable
of tracking the direction of system responses in terms of
voltage stability.

To observe the responses of the SVM output when con-
trol actions are applied, an adequate control of load shed-
ding to save the system for the unstable case was con-
ducted. The timing of load shedding action is one of im-
portant factorsin determination of control strategies. In the
case, if enough load shedding is applied before the magni-
tude SVM classifier output approaches the reference axis,
the system could be back to a stable trajectory. The cor-
rective control, as shown in Fig. 4, keeps the SVM output
positive. The SVM output jumps rapidly to a much higher
value immediately after applying the load shedding and
then gets down and settles around a positive steady value.
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Fig. 4 SVM output when applying load shedding control
for stabilization

A comparison study is done on the performance of
IPMSVM with Multi-Layered Perceptrons (MLP) models.
In this study, IPMSVM with linear (IPMSVM1) and Gaus-
sian kernel (IPMSVM?2) functions, Multi-Layered Percep-
tronsmodels (MLP1 and MLP2) with 5 and 10 hidden lay-
ers. For the classifiers, the same training and testing data
sets are applied. In Table 1, detection and false dismissal
rate are shown for each classifier when the number of train-
ing data is 480. Detection rate, Rp, is theratio of the sta-
ble test data that have been correctly classifier and false
dismissal rate is 1-Rp. For this configuration, IPMSVM2
have abest performancein terms of classification; the max-
imum detection rate that can be achieved using MLPs in
this study is 0.9632, but that using IPMSVMZ2is 1. In Fig.
5, detection rates of the classifiers with 300 and moretrain-
ing samples areillustrated. On the early stage of the graph,
an important set of data from the boundaries of the posi-
tive class have not yet been included. The detection rate
of IPMSVM2 gets improved after adding the appropriate
positive class in the training data.

Table 1. Performance comparison with other classifiers

Detection | Falsedismissa number of
rate rate traning data
MLP1(a=5) 0.9632 0.0368 480
MLP2(a=10) 0.9632 0.0368 480
IPMSVM1 0.9387 0.0613 480
IPMSVM2 1.0000 0.0000 480

In the voltage stability classification, the ease of tuning
the classifier and the consistency of results with unbalance
training dataareimportant factorsfor accurate detection. In
selection of classifier, the compensation of dataover-fitting,
which is implicit in the nature of the problem, should be
considered as one of major priorities. For power system
application, most of the data available are for stable cases,
so the generalization ability of SVM with limited resources
for training fits this type of classification.
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5 Conclusion

This paper presents a new methodology for real-time
power system voltage stability classification using the sup-
port vector machine based on an interior point method.
When applying IPM, the total number of iteration is not
seriously affected by the increase in the system size, which
depends on the number of samples for SVM. For feature
vector generation, the classifier directly uses sets of time
series data, which can be obtained by local measurement on
system responses, with the ssmple manipulation to increase
therelativeinformation. Thetest results show that the clas-
sifier can offer an effective signal for long-term voltage sta-
bility identification based on real-timelocal measurements.
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