DOI QR코드

DOI QR Code

The Effect of Suspension Stability on the Thermal Conductivity Enhancement of Water-based Au Nanofluids

물-기반 금나노유체의 분산안정성이 열전도도에 미치는 영향

  • 최태종 (한국항공대학교 항공 우주 및 기계공학부) ;
  • 김현진 (국방기술품질원) ;
  • 이승현 (한국항공대학교 항공 우주 및 기계공학부) ;
  • 박용준 (국방기술품질원) ;
  • 장석필 (한국항공대학교 항공 우주 및 기계공학부)
  • Received : 2016.06.07
  • Accepted : 2016.06.17
  • Published : 2016.06.30

Abstract

This paper experimentally reports the effect of suspension stability on the thermal conductivity of water-based Au nanofluids. For this purpose, the water-based Au nanofluids are prepared by the one-step method called electro-chemical method with volume fraction of 0.0005%. The thermal conductivity of water-based Au nanofluids is measured from $22^{\circ}C$ to $42^{\circ}C$ using the transient hot wire method. To quantify the suspension stability of Au nanofluids, the suspension stability of nanofluids is evaluated using the in-house developed laser scattering system at a fixed wavelength of 632.8nm with the elapsed time. Based on the experimental results, the both thermal conductivity and suspension stability of water-based Au nanofluids are gradually decreased according to the time. These results experimentally show that the suspension stability of water-based Au nanofluids is the one of the important factor of thermal conductivity.

Keywords

References

  1. S. U. S. Choi and J. A. Eastman, "Enhancing Thermal Conductivity of Fluids with Nanoparticles", ASMEPublications-FED, Vol. 231, 1995, pp. 99-105.
  2. S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles", ASME J. Heat Transfer, Vol. 121, 1999, pp. 280-290. https://doi.org/10.1115/1.2825978
  3. B. C. Pak and Y. I. Cho, "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles", Experimental Heat Transfer an International Journal, Vol. 11, 1998, pp. 151-170. https://doi.org/10.1080/08916159808946559
  4. X. Wang, X. Xu and S. U. S. Choi, "Thermal Conductivity of Nanoparticles-fluid Mixture", J. Thermophys. Heat Transfer, Vol. 13, 1999, pp. 474-480. https://doi.org/10.2514/2.6486
  5. J. A. Eastman, S. U. S. Choi, S. Li, G. Soyez, L. J. Thompson and R. J. Dimelfi, "Novel Thermal Properties of Nanostructured Materials", Materials Science Forum, Vol. 312-314, 1999, pp. 629-634. https://doi.org/10.4028/www.scientific.net/MSF.312-314.629
  6. S. M. Peyghambarzadeh, S. H. Hashemabadi, M. Seifijamnani and S. M. Hoseini, "Improving the cooling performance of automobile radiator with $Al_2O_3$/water nanofluid", Applied Thermal Engineering, Vol. 31, Issue. 10, 2011, pp. 1833-1838. https://doi.org/10.1016/j.applthermaleng.2011.02.029
  7. S.-H. Lee and S. P. Jang, "Efficiency of a Volumetric Receiver Using Aqueous Suspensions of Multi-Walled Carbon Nanotubes for Absorbing Solar Thermal Energy", International Journal of Heat and Mass Transfer, Vol. 80, 2015, pp. 58-71. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.091
  8. H. J. Kim, S.-H. Lee, S. B. Kim and S. P. Jang, "The Effect of Nanoparticle Shape on the Thermal Resistance of a Flat-Plate Heat Pipe Using Acetone-Based $Al_2O_3$ Nanofluids", International Journal of Heat and Mass Transfer, Vol. 92, 2016, pp. 572-577. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.013
  9. T. Yuamsawasd, A. S. Dalkilic and S. Wongwisesa, "Measurement of the thermal conductivity of titania and alumina nanofluids", Thermochim Acta, Vol. 545, 2012, pp. 48-56. https://doi.org/10.1016/j.tca.2012.06.026
  10. J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson and S. Lee, "Enhanced thermal conductivity through the development of nanofluids. In: Proceedings of the Symposium on Nanophase and Nanocomposite Materials II", Boston Vol. 457, 1997, pp. 3-11.
  11. S. P. Jang and S. U. S. Choi, "Effects of various parameters on nanofluid thermal conductivity", J. Heat Trans.-ASME, Vol. 129, 2007, pp. 617-623.
  12. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, "Anomalous thermal conductivity enhancement in nanotube suspensions", Appl. Phys. Lett., Vol. 79, 2001, pp. 2252-2254. https://doi.org/10.1063/1.1408272
  13. C. H. Chon, K. D. Kihm, S. P. Lee and S. U. S. Choi, "Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid ($Al_2O_3$) Thermal Conductivity Enhancement", Appl. Phys. Lett., Vol. 87, 2005, pp. 153107-1-3. https://doi.org/10.1063/1.2093936
  14. J.-H. Lee, S.-H. Lee and S. P. Jang, "Do Temperature and Nanoparticle Size Affect the Thermal Conductivity of Alumina Nanofluids?", Appl. Phys. Lett., Vol. 104, 2014, pp. 161908. https://doi.org/10.1063/1.4872164
  15. M.-S. Liu, M.C.-C. Lin, C. Y. Tsai and C.-C. Wang, "Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method", Int. J. Heat Mass Tran., Vol. 49, 2006, pp. 3028-3033. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.012
  16. K. S. Hong, T.-K. Hong and H.-S. Yanga, "Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles", Appl. Phys. Lett., Vol. 88, 2006, pp. 031901. https://doi.org/10.1063/1.2166199
  17. H. J. Kim, S.-H. Lee, J.-H. Lee and S. P. Jang, "Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids", Energy, Vol. 90, 2015, pp. 1290-1297. https://doi.org/10.1016/j.energy.2015.06.084
  18. W. A. Wakeham, A. Nagashima and J. V. Sengers, "Measurement of the transport properties of fluids", Blackwell Science, 1991, London, Chap. 7.
  19. R. H. Muller, G. E. Hildebrand, R. Nitzche and B. R. Paulke, "Zetapotential und Partikelladung in der Laborpraxis", Wissenschaftliche Verlagsgesellschaft, 1st Ed., 1996, Stuttgart.