• 제목/요약/키워드: Stability-Robustness

검색결과 563건 처리시간 0.025초

A Systematic Design of Automatic Fuzzy Rule Generation for Dynamic System

  • Kang, Hoon;Kim, Young-Ho;Jeon, Hong-Tae
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.29-39
    • /
    • 1992
  • We investigate a systematic design procedure of automatic rule generation of fuzzy logic based controllers for highly nonlinear dynamic systems such as an engine dynamic modle. By "automatic rule generation" we mean autonomous clustering or collection of such meaningful transitional relations from one conditional subspace to another. During the design procedure, we also consider optimaly control strategies such as minimum squared error, near minimum time, minimum energy or combined performance critiera. Fuzzy feedback control systems designed by our method have the properties of closed-loop stability, robustness under parameter variabitions, and a certain degree of optimality. Most of all, the main advantage of the proposed approach is that reliability can be potentially increased even if a large grain of uncertainty is involved within the control system under consideration. A numerical example is shown in which we apply our strategic fuzzy controller dwsign to a highly nonlinear model of engine idling speed control.d control.

  • PDF

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

최적화 기법에 의한 비선형 시스템에서의 강인한 적응 관측기 설계 (Robust Adaptive Observer Design for a Class of Nonlinear Systems via an Optimization Method)

  • 정종철;허건수
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1249-1254
    • /
    • 2006
  • Existing adaptive observers may cause the parameter drifts due to disturbances even if state estimation errors remain small. To avoid the drift phenomena in the presence of bounded disturbances, several robust adaptive observers have been introduced addressing bounds in state and parameter estimates. However, it is not easy for these observers to manipulate the size of the bounds with the selection of the observer gain. In order to reduce estimation errors, this paper introduces the (equation omitted) gain minimization problem in the adaptive observer structure, which minimizes the (equation omitted) gain between disturbances and estimation errors. The stability condition of the adaptive observer is reformulated as a linear matrix inequality, and the observer gain is optimally chosen by solving the convex optimization problem. The estimation performance is demonstrated through a numerical example.

DSP-based Robust Nonlinear Speed Control of PM Synchronous Motor Using Adaptive and Sliding Mode Control Techniques

  • Baik, In-Cheol;Kyeong-Hwa;Kwan-Yuhl;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권2호
    • /
    • pp.251-260
    • /
    • 1998
  • A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) which is robust to unknown parameter variations and speed measurement error is presented. The model reference adaptive system(MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the Lyapunov stability theory. For the disturbances or quickly varying parameters. a quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme.

  • PDF

Reduced Weight Scatter with Bonded Powder Mixes

  • Edman, Daniel;Alzati, Luigi;Pozzi, Giovanni;Frediani, Carlo;Crosa, Riccardo;Larsson, Mats
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.735-736
    • /
    • 2006
  • Organically bonded P/M mixes have been developed to improve the stability of dimensional properties by reducing the segregation of the mix constituents and improving the filling characteristics. Robustness and reliability are key factors for the promotion of P/M as cost effective substitute of competing manufacturing technologies. Based on the production of four different belt pulleys, this paper presents the achievement of reduced weight scatter and close dimensional control realizable by using a $Starmix^{TM}$ that is organically bonded.

  • PDF

퍼지 PID제어기를 이용한 비선형 유압시스템의 제어 (Nonlinear Hydraulic System Control using Fuzzy PID Controller)

  • 김인환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.583-592
    • /
    • 1999
  • In order to control systems which contain nonlinearities control strategies must deal with the effects of them. Since most of control methods based on system mathematical models have been mainly developed focused on stability robustness against nonlinearities or uncertainties under the assumption that controlled systems are linear time invariant they have certain amount of limita-tions to smartly improve control perfomances of systems disturbed by nonlinearities or uncertainties. In this paper the fuzzy PID control law is suggested which can improve control performances of the nonlinear heavy load hydraulic systems disturbed by nonlinearities and uncertainties. Although the derivation process is based on the design process similar to general fuzzy logic con-troller resultant control law has analytical forms with time varying PID gains rather than linguis-tic forms so that implementation using commn-used versatile microprocessors can be achieved easily and effectively in real-time control aspect.

  • PDF

독립된 모달공간에서 양 위치피드백 제어기법의 강인성 (Robustness of Positive Position Feedback Control in the Independent Modal Space)

  • 황재혁;백승호
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.177-185
    • /
    • 1994
  • In this study, the effect of parameter errors on the closed-loop behavior of flexible structure is analyzed for IMSC(Independent Modal Space Control) with PPF(Positive Position Feedback). If the control force designed on the basis of structure model with the parameter errors is applied to control the actual system, the closed-loop performance of the actural system will be degraded depending on the degree of the errors. An asymptotic stability condition has been derived, using Lyapunov approach, which is independent of the dynamic characteristics of the structure being controlled. The extent of deviation of the closed-loop performance from the designed one is also derived and evaluated using operator techniques. It has been found that the extent of the deviation is proportational to the magnitude of the parameter errors, and that the proportional coefficient depends on the control algorithm.

  • PDF

RHC를 기반으로 하는 열간압연 루퍼 제어 (RHC based Looper Control for Hot Strip Mill)

  • 박철재
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.295-300
    • /
    • 2008
  • In this paper, a new looper controller is proposed to minimize the tension variation of a strip in the hot strip finishing mill. The proposed control technology is based on a receding horizon control (RHC) to satisfy the constraints on the control input/state variables. The finite terminal weighting matrix is used instead of the terminal equality constraint. The closed loop stability of the RHC for the looper system is analyzed to guarantee the monotonicity of the optimal cost. Furthermore, the RHC is combined with a 4SID(Subspace-based State Space System Identification) model identifier to improve the robustness for the parameter variation and the disturbance of an actuator. As a result, it is shown through a computer simulation that the proposed control scheme satisfies the given constraints on the control inputs and states: roll speed, looper current, unit tension, and looper angle. The control scheme also diminishes the tension variation for the parameter variation and the disturbance as well.

Fuzzy Sliding Mode Control for a Hydraulic Elevator Controlled by Inverter

  • Han, Gueon-Sang;Park, Jae-Sam;Ahn, Hyun-Sik;Kim, Do-Hyun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1487-1490
    • /
    • 2002
  • In this paper, a design methodology of fuzzy sliding mode control scheme for a hydraulic elevator controlled by inverter is presented. The proposed scheme uses a fuzzy sliding mode controller(FSMC), which is designed based on the similarity between the fuzzy logic control(FLC) and the sliding mode control(SMC). The proposed method has advantages that the stability and the robustness of the FLC are proved and ensured by the sliding mode control law, and the computation burden could be reduced greatly. The validity and the effectiveness of the proposed control method have been shown through the real world industrial application results.

  • PDF

의사모형화 방법을 이용한 극배치 적응제어기의 강인성 개선 (Robust Adaptive Pole Assignment Control using Pseudo Plant)

  • 김국헌;박용식;허명준;양흥석
    • 대한전기학회논문지
    • /
    • 제37권5호
    • /
    • pp.319-326
    • /
    • 1988
  • In the presence of unmodeled dynamics, the robustness of adaptive pole assignment control using new pseudo-plant is presented. The pseudo-plant proposed by Donati et al. is modified as the gain of low pass filter can be set from zero to one. This modified pseudo-plant results in the reduction of modeling error. It is shown that not only this approach is insensitive to input frequency but also it improves the conic condition developed by Ortega et al. which is required to assure stability of adaptive control system despite the model-plant mismatch. A simple method to compensate the tracking error due to the use of pseudo-plant is considered.

  • PDF