• Title/Summary/Keyword: Stability-Robustness

Search Result 562, Processing Time 0.03 seconds

Nonlinear model based particle swarm optimization of PID shimmy damping control

  • Alaimo, Andrea;Milazzo, Alberto;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.211-224
    • /
    • 2016
  • The present study aims to investigate the shimmy stability behavior of a single wheeled nose landing gear system. The system is supposed to be equipped with an electromechanical actuator capable to control the shimmy vibrations. A Proportional-Integrative-Derivative (PID) controller, tuned by using the Particle Swarm Optimization (PSO) procedure, is here proposed to actively damp the shimmy vibration. Time-history results for some test cases are reported and commented. Stochastic analysis is last presented to assess the robustness of the control system.

Implementation of an Adaptive Robust Neural Network Based Motion Controller for Position Tracking of AC Servo Drives

  • Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • The neural network with radial basis function is introduced for position tracking control of AC servo drive with the existence of system uncertainties. An adaptive robust term is applied to overcome the external disturbances. The proposed controller is implemented on a high performance digital signal processing DSP TMS320C6713-300. The stability and the convergence of the system are proved by Lyapunov theory. The validity and robustness of the controller are verified through simulation and experimental results

Landslide Stability Analysis and Prediction Modeling with Landslide Occurrences on KOMPSAT EOC Imagery

  • Chi, Kwang-Hoon;Lee, Ki-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Landslide prediction modeling has been regarded as one of the important environmental applications in GIS. While, landslide stability in a certain area as collateral process for prediction modeling can be characterized by DEM-based hydrological features such as flow-direction, flow-accumulation, flow-length, wetness index, and so forth. In this study, Slope-Area plot methodology followed by stability index mapping with these hydrological variables is firstly performed for stability analysis with actual landslide occurrences at Boeun area, Korea, and then Landslide prediction modeling based on likelihood ratio model for landslide potential mapping is carried out; in addition, KOMPSAT EOC imagery is used to detect the locations and scalped scale of Landslide occurrences. These two tasks are independently processed for preparation of unbiased criteria, and then results of those are qualitatively compared. As results of this case study, land stability analysis based on DEM-based hydrological variables directly reflects terrain characteristics; however, the results in the form of land stability map by landslide prediction model are not fully matched with those of hydrologic landslide analysis due to the heuristic scheme based on location of existed landslide occurrences within prediction approach, especially zones of not-investigated occurrences. Therefore, it is expected that the resets on the space-robustness of landslide prediction models in conjunction with DEM-based landslide stability analysis can be effectively utilized to search out unrevealed or hidden landslide occurrences.

Repetitive learning method for trajectory control of robot manipulators using disturbance observer

  • Kim, Bong-Keun;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.99-102
    • /
    • 1996
  • A novel iterative learning control scheme comprising a unique feedforward learning controller and a disturbance observer is proposed. Disturbance observer compensates disturbance due to parameter variations, mechanical nonlinearities, unmodeled dynamics and external disturbances. The convergence and robustness of the proposed controller is proved by the method based on Lyapunov stability theorem. The results of numerical simulation are shown to verify the effectiveness of the proposed control scheme.

  • PDF

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF

Feedback Error Learning and $H^{\infty}$-Control for Motor Control

  • Wongsura, Sirisak;Kongprawechnon, Waree;Phoojaruenchanachai, Suthee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1981-1986
    • /
    • 2004
  • In this study, the basic motor control system had been investigated. The controller for this study consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such a tracking perfect, an adaptive law based on Feedback Error Learning (FEL) is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The theory in $H^{\infty}$-Control is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.

  • PDF

Gain Tuning of PID Controllers with the Dynamic Encoding Algorithm for Searches(DEAS) Based on the Constrained Optimization Technique

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.13-18
    • /
    • 2003
  • This paper proposes a design method of PID controllers in the framework of a constrained optimization problem. Owing to the popularity for the controller's simplicity and robustness, a great deal of literature concerning PID control design has been published, which can be classified into frequency-based and time-based approaches. However, both approaches have to be considered together for a designed PID control to work well with a guaranteed closed-loop stability. For this purpose, a penalty function is formulated to satisfy both frequency- and time-domain specifications, and is minimized by a recet nonlinear optimization algorithm to attain optimal PID control gains. The proposed method is compared with Wang's and Ho's methods on a suite of example systems. Simulation results show that the PID control tuned by the proposed method improves time-domain performance without deteriorating closed-loop stability.

  • PDF

Eigenstructure Assignment Considering Probability of Instability with Flight Control Application

  • Seo, Young-Bong;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.607-613
    • /
    • 2007
  • Eigenstructure assignment provides the advantage of allowing great flexibility in shaping the closed-loop system responses by allowing specification of closed-loop eigenvalues and corresponding eigenvectors. But, the general eigenstructure assignment methodologies cannot guarantee stability robustness to parameter variations of a system. In this paper, we present a novel method that has the capability of exact assignment of an eigenstructure which can consider the probability of instability for LTI (Linear Time-Invariant) systems. The probability of instability of an LTI system is determined by the probability distributions of the closed-loop eigenvalues. The stability region for the system is made probabilistically based upon the Monte Carlo evaluations. The proposed control design method is applied to design a flight control system with probabilistic parameter variations to confirm the usefulness of the method.

Terminal Sliding Mode Control of Nonlinear Systems Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경망을 이용한 비선형 시스템의 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1033-1039
    • /
    • 2007
  • In this paper, we design a terminal sliding mode controller based on self-recurrent wavelet neural network (SRWNN) for the second-order nonlinear systems with model uncertainties. The terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time in comparison with the classical sliding mode control (CSMC) method. In addition, the TSMC method has advantages such as the improved performance, robustness, reliability and precision. We employ the SRWNN to approximate model uncertainties. The weights of SRWNN are trained by adaptation laws induced from Lyapunov stability theorem. Finally, we carry out simulations for Duffing system and the wing rock phenomena to illustrate the effectiveness of the proposed control scheme.

Implementation of a Lyapunov Function Based Fuzzy Controller for the Precise Positioning of DC Servo Motor

  • Lee, Joon-Tark;Lee, Oh-Keol;Shin, Song-Ho;Park, Doo-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.42-45
    • /
    • 1998
  • In this paper, a fuzzy control technique using adjustable scale factors and Lyapunov Function for the precise position control of DC servo system is introduced. The suitable scale factors were selected and the stable control input using the stability theory of Lyapunov function cam be applied. Therefore, the controlled system have the robustness against disturbances and can be stabilized because of reinforced adaptivity. This proposed fuzzy controller is implemented on a 80586 micro-computer which have of fuzzy inference routine part, manipulating part of scale factors and DT-2801 data aquisition board.

  • PDF