• Title/Summary/Keyword: Sprung Mass

Search Result 56, Processing Time 0.031 seconds

Low Frequency Vibration of the Sprung Mass on Front Outer Wheel in Cornering (선회 시 차량의 외측전륜 스프링 상질량의 저주파 진동)

  • Lee, Byung-Rim;Lee, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1889-1893
    • /
    • 2000
  • During the test drive of developing vehicle, a low frequency vibration of sprung mass on front outer wheel has been frequently observed in cornering with some speed. The purpose of this paper is to investigate the low frequency vibration of the sprung mass. The analysis result shows that the low frequency vibration is caused by sudden migration of the center of gravity of vihicle and it is determined by geometric points of suspension.

  • PDF

Stability and frequency response analysis of multipurpose vehicle using linear vehicle model (다용도 차량의 선형 모델을 이용한 직진 안전성 및 주파수 응답해석)

  • Kim, B.K.;Kim, W.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.124-129
    • /
    • 1997
  • The purpose of this study is to predict the stability and frequency response of multipurpose vehicle. The vehicle model has seven degrees of freedom. The motion equations are derived by using Lagrangian equation and linearized. The positions of eigenvalues of model which are dominated by lateral velocity, yaw rate, roll rate of sprung mass are used to predict the stability of motion. The resonse of sprung mass to steering wheel is simulated in time domain. It is predicted that the roll response of sprung mass would rather be improved by modifying the position of eigenvalues. The responses of sprung mass to steering wheel are also simulated in frequency domain. The magnitude and phase plots of gains are evaluated in driver's steering input frequency range.

  • PDF

Dynamic Design of a Mass-Spring Type Translational Wave Energy Converter (파력발전용 병진 질량-스프링식 파력 변환장치의 동적설계)

  • Choi, Young-Hyu;Lee, Chang-Jo;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.182-189
    • /
    • 2012
  • This study suggests a dynamic design process for deciding properly design parameters of a mass-spring type Wave Energy Converter (WEC) to achieve sufficient energy conversion from wave to power generator. The WEC mechanism, in this research, consists of a rigid sprung body, a platform, suspension springs and dampers. The rigid sprung body is supported on the platform via springs and dampers and vibrates translationally in the heave direction under wave excitation. At last the resulting heave motion of the sprung body is transmitted to rotating motion of the electric generator by rack and pinion, and transmission gears. For the purpose of vibration analysis, the WEC mechanism has been simply modelled as a mass-spring-damper system under harmonic base excitation. Its maximum displacement transmissibility and steady state response can be determined by using elementary vibration theory if the harmonic ocean wave data were provided. With the vibration analysis results, the suggested dynamic design process of WEC can determine all the design parameters of the WEC mechanism, such as sprung body mass, suspension spring constant, and damping coefficient that can give sufficient relative displacement transmissibility and the associated inertia moment to drive the electric generator and transmission gears.

The Effect of Moving Mass on Resonance Phenomenon and Natural Frequency of a Simply Supported Beam (이동질량을 고려한 단순지지된 교량의 진동수 및 공진현상 분석)

  • Min, Dong-Ju;Jung, Myung-Rag;Park, Sung-Min;Kim, Moon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2016
  • The purpose of this study is to investigate the influence of moving mass on the vibration characteristics and the dynamic response of the simply supported beam. The three types of the moving mass(moving load, unsprung mass, and sprung mass) are applied to the vehicle-bridge interaction analysis. The numerical analyses are then conducted to evaluate the effect of the mass, spring and damper properties of the moving mass on natural frequencies and dynamic responses of the simply supported beam. Particularly, in the case of the sprung mass, variations of the natural frequency of simply supported beam are explored depending on the position of the moving mass and the frequency ratio of the moving mass and the beam. Finally the parametric studies on the resonance phenomena are performed with changing mass, spring and damper parameters through the dynamic interaction analyses.

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.

Optimal Design of Shock Absorber using High Speed Stability (고속 안정성을 고려한 쇽업소버 최적 설계)

  • 이광기;모종운;양욱진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

A Quantitative analysis about Wheel Load Variations (실 주행열차의 윤중변동에 대한 정량적 분석)

  • Kim Hyun-Min;Oh Ji-Tack
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.728-732
    • /
    • 2004
  • The purpose of this study is to examine wheel load variations on the bridge. It had been reported that wheel load variations involved un-sprung mass, sprung mass and train running speed, but there are no examples that measured in the running speed actuality track. In this experiment, Attach measurement sensor to equal distance on the track and measured wheel loads by using a dynamic shear strain technique.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension System: Implementation and Experiment

  • Tae, Hong-Kyung;Chul, Sohn-Hyun;Ryong, Jung-Jae;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.4-178
    • /
    • 2001
  • In this paper a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype ...

  • PDF

Control of Semi-active Suspensions for Passenger Cars(I) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2179-2186
    • /
    • 1997
  • In this paper, the performance of a semi-active suspension system for a passenger car has been investigated. Alternative semi-active suspensions control laws has been compared via simulations. The control laws investigated in this study are : sprung mass velocity feedback control law, sky-hook damping control law, and state feedback control law. Simulation results show that a semi-active suspension has potential to improve ride quality of automobiles.

Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems (자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF