• Title/Summary/Keyword: Spray-on membrane

Search Result 39, Processing Time 0.029 seconds

A Study on Examination of Application in Waste Filled Land and Performance Evaluation as Waterproofing Material by the Spray Water-Soluble Rubber Asphalt (뿜칠형 수용성 고무화 아스팔트 차수재의 성능평가 및 폐기물 매립지 적용성 검토에 관한 연구)

  • 이성일;정문정;김형무;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.163-168
    • /
    • 2001
  • This study examinated the application in construction field and the development of waterproofing material system by the spray water-soluble rubber asphalt to solve the problems of synthetic polymer sheet and gio membrane(A mat sheet of Bentonite) that had been used domestic waterproofing material in advance. As the result of study, characters of study water-souble rubber asphalt are the follows; 1) The amount of water absorption was '0.06'g and the seepage quantity was '0'g in result. 2) The tensile strength was about 30.7kgf/$cm^2$ and the elongation was about 72.4% in result. 3) After reliance of temperature test had been ended, the tensile strength was about 72.4kg/$cm^2$ in low temperature and about 30.7kgf/$cm^2$ in normal temperature. 4) After acid and alkaline treatment had been ended, the tensile strength was about 19.7kgf/$cm^2$ and about 21.9kgf/$cm^2$ in result. 5) After chlorine ion treatment had been ended, the tensile strength was 28.5kgf/$cm^2$ and the elongation was 250% in result. So, this study can propose the spray water-soluble rubber asphalt to satisfy the security and durability of waste filled land.

  • PDF

Development of Controlled Release Oral Drug Delivery System by Membrane-Coating Method-III- Preparation of Theophylline Tablets and Pharmacokinetic Evaluation in Man- (피막법에 의한 경구투여용 제어방출제제의 개발-III-테오필린함유 제어방출제제의 제조 및 사람의 타액중 농도로부터의 평가-)

  • Shim, Chang-Koo;Kim, Chong-Kook;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.205-210
    • /
    • 1992
  • In order to develop a controlled-release oral drug delivery system (DDS) of theophylline (TP), microporous membrane-coated tablets were prepared and evaluated in vitro and in vivo. Rapidly water-soluble core tablets of TP (300 mg) were prepared by wet granulation and compression technique, Then the core tablets were spray-coated with polyvinylchloride (PVC) in which micronized sucrose particles were dispersed. Effect of formula compositions of coating suspensions on the pharmaceutical characteristics such as membrane strength and dissolution was investigated in vitro. The membranes remained unbroken in pH 1.2 buffer at $37^{\circ}C$ at least for 2 hours after the disintergration test. TP was released from the coated-released tablets at a zero-order rate over 8 hours. The release at pH 1.2 and 4.0 was similar in rate but a little more rapid than that at pH 6.8. The coated tablets were administered to three healthy male volunteers and their saliva profiles of TP were compared with those from the commercial sustained release TP tablets such as Slobid and Asconthin. Saliva TP concentrations from the coated tablets were successfully sustained over 48 hours after the dosing and were comparable to those of the commercial sustained-release tablets. The membrane-coating technique is very simple and does not need any sophisticated equipments. In this respect, the membrane-coated tablets may be superior to the commercial sustained-release tablets and this technique is worth adopting by the pharmaceutical industries.

  • PDF

A Study on Examination of Application in Waste Filled Land and Performance Evaluation as Waterproofing Material by the Spray Water-Soluble Rubber Asphalt (뿜칠형 수용성 고무화 아스팔트 차수재의 성능평가 및 폐기물 매립지 적용성 검토에 관한 연구)

  • 오상근;김형무;정문정;최은수
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.165-173
    • /
    • 2001
  • This study examinated the application in construction field and the development of waterproofing material system by the spray water-soluble rubber asphalt to solve the problems of synthetic polymer sheet and gio membrane(A mat sheet of Bentonite) that had been used domestic waterproofing material in advance. As the result of study, characters of study water-soluble rudder asphalt are the follows: 1) The amount of water absorption was '0.06'g and the seepage quality was '0'g in result. 2) The tensile strength was about 30.7kgf/$\textrm{cm}^2 and the elongation was about 72.4% in result. 3) After reliance of temperature test had been ended, the tensile strength was about 72.4kgf/$\textrm{cm}^2 in low temperature and about 30.7kgf/$\textrm{cm}^2 in normal temperature. 4) After acid and alkaline treatment had been ended, the tensile strength was about 19.7kgf/$\textrm{cm}^2$ and about 21.9kgf/$\textrm{cm}^2 in result. 5) After chlorine ion treatment had been ended, the tensile strength was 28.5kgf/$\textrm{cm}^2$ and the elongation was 250% in result. 6) The impact performance was subsided at 1.5m height. 7) After promotion weathering had been ended, the tensile and elongation was about 26.0kgf/$\textrm{cm}^2, 214% in result. So, this study can propose the spray water-soluble rubber asphalt to satisfy the and durability of waste filled land.

  • PDF

Characteristics of Ultrafiltration and Spray Drying for Crude Protein Bound Polysaccharides Isolated from Agaricus blasei Murill (아가리쿠스버섯에서 분리한 조단백다당류의 막분리 및 분무건조 특성)

  • 홍주헌;윤광섭;최용희
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • This study was conducted to investigate the characteristics of ultrafiltration and spray drying process for crude protein bound polysaccharide(CPBP) isolated from Agaricus blasei Murill. In ultrafiltration process, the permeate flux increased with the increase of operating pressure and temperature. The permeate flux declined continuously while the fouling materials were accumulated on the membrane as the operation time increased. In comparing of raw CPBP and filtered CPBP, the viscosity of CPBP treated UF was decreased and $\Delta$E value of treated samples was increased. Thermal efficiencies of spray drying process were increased by increasing inlet temperature, feed rate and feed concentration.

Study on PEM-Fuel-Cell Humidification System Consisting of Membrane Humidifier and Exhaust Air Recirculation Units (막가습기와 공기극 재순환을 사용한 고분자 전해질 연료전지의 가습특성 해석)

  • Byun, Su-Young;Kim, Beom-Jun;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.337-344
    • /
    • 2011
  • The humidification of reactant gases is crucial for efficiently operating PEM (polymer electrolyte membrane) fuel cell systems and for improving the durability of these systems. The recycle of the energy and water vapor of exhaust gas improves the system performance especially in the case of automotive application. The available humidification methods are steam injection, nozzle spray, humidification by enthalpy wheel, membrane humidifier, etc. However, these methods do not satisfy certain requirements such as compact design, efficient operation and control. In this study, a hybrid humidification system consisting of a membrane humidifier and exhaust-air recirculation units was developed and the humidification performance of this hybrid humidifier was analyzed. Finally, a new practical method for optimal design of PEM-fuel-cell humidification system is proposed.

Effect of organic solvents on catalyst structure of PEM fuel cell electrode fabricated via electrospray deposition

  • Koh, Bum-Soo;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.18 no.11
    • /
    • pp.810-814
    • /
    • 2017
  • Proton exchange membrane fuel cells (PEMFCs) are some of the most efficient electrochemical energy sources for transportation applications because of their clean, green, and high efficiency characteristics. The optimization of catalyst layer morphology is considered a feasible approach to achieve high performance of PEMFC membrane electrode assembly (MEA). In this work, we studied the effect of the solvent on the catalyst layer of PEMFC MEAs fabricated using the electrostatic spray deposition method. The catalyst ink comprised of Pt/C, a Nafion ionomer, and a solvent. Two types of solvent were used: isopropyl alcohol (IPA) and dimethylformamide (DMF). Compared with the catalyst layer prepared using IPA-based ink, the catalyst layer prepared with DMF-based ink had a dense structure because the DMF dispersed the Pt/C-Nafion agglomerates smaller and more homogeneously. The size distribution of the agglomerates in catalyst ink was confirmed through Dynamic Light Scattering (DLS) and the microstructure of the catalyst layer was compared using field emission scanning electron microscopy (FE-SEM). In addition, the electrochemical investigation was performed to evaluate the solvent effect on the fuel cell performance. The catalyst layer prepared with DMF-based ink significantly enhanced the cell performance (1.2 A cm-2 at 0.5 V) compared with that fabricated using IPA-based ink (0.5 A cm-2 at 0.5 V) due to the better dispersion and uniform agglomeration on the catalyst layer.

Evaluation of Mechanical Performance of a Segment Lining coated by a Sprayed Waterproofing Membrane by a Full-scale Loading Test (실물 재하실험에 의한 뿜칠 방수 멤브레인이 타설된 세그먼트 라이닝의 역학적 성능 평가)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Park, Byungkwan;Kim, Jintae;Choi, Myung-Sik;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.97-110
    • /
    • 2018
  • The application of sprayed waterproofing membrane with high adhesion and ductility is considered to be promising as a measure for repair and reinforcement of a tunnel structure. Therefore, a powder-type and one-component membrane prototype with high tensile and bond strengths was made in this study. Then, its reinforcement effect on a shield segment was evaluated by carrying out a series of full-scale loading tests of segment specimens on which the membrane was sprayed. From the tests, it was confirmed that the initial cracking loads increased by approximately 34% due to cracking retardation by membrane coating. Even though the increase of failure loads were not so high as cracking loads, the strain-softening behaviors were observed from specimens coated by the membrane. Therefore, it is expected that the membrane coated on the inner surface of a lining might be effective in preventing its brittle failure.

Analysis of Reinforcement Effect of TSL (Thin Spray-on Liner) as Supports of Tunnel by Numerical Analysis (수치해석에 의한 터널 지보재로서 TSL(Thin Spray-on Liner)의 보강 효과 분석)

  • Lee, Kicheol;Kim, Dongwook;Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.151-161
    • /
    • 2017
  • A TSL (Thin Spray-on Liner) has a higher initial strength and faster construction time than conventional cementitious shotcrete. Because of its high adhesion and tensile strength, the TSL reinforced concrete show a characteristic like composite materials. In this study, to consider an application to the conventional design method, ASD (allowable stress design), numerical study was used. In the numerical analysis, material and contact properties were adopt from previous studies. Then a thickness of concrete in the tunnel was evaluated with the TSL reinforced case by the ASD concept. In other words, bending compressive stress, bending tensile stress and shearing force of the concrete were considered to determine a thickness of concrete lining by the given boundary conditions. From the numerical analysis, there was no tendency to show by the ASD because the ASD is based on the elastic theory while the TSL typically contributes to reinforcement after yielding.

Preparation of Photosynthesis Nanofiber Composite Membrane by Using Chlorophyll and Polymer Nanofiber (식물 엽록소와 고분자 나노섬유를 이용한 광합성 나노섬유복합막의 제조)

  • Yun, Jaehan;Jang, Wongi;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In this study, chlorophylls were been extracted from common local plants, deposited on polypropylene (PP) substrate using various approaches, and the oxygen generation effect of the chlorophylls were investigated. The loading of chlorophylls on the substrates was achieved by dipping and spraying methods, where the spraying coating showed overall better results regarding oxygen generation from the combustion experiments in the closed vessel or in the isolated vacuum oven cell than those of dip coating. In addition, a composite substrate was prepared by nylon6/6 nanofiber on the PP substrate, and it exhibited an increase in the activation of chlorophylls. In the case of samples containing titanium dioxide ($TiO_2$), the reaching time of oxygen concentration from 16% to 21% and the combustion test using a candle for a sample with 50% chlorophylls showed similar results to those of a sample without $TiO_2$. As such, combining a spray coating and $TiO_2$ incorporation into gas separation membrane systems are expected to be useful to understand the fundamentals of material properties for their applications as oxygen generation membranes and air filtration systems.

Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method (Bar-Coating 방법으로 제조한 직접메탄올 연료전지 MEA의 성능)

  • Kang, Se-Goo;Park, Young-Chul;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Jang, Jae-Hyuk;Peck, Dong-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.