Characteristics of Ultrafiltration and Spray Drying for Crude Protein Bound Polysaccharides Isolated from Agaricus blasei Murill

아가리쿠스버섯에서 분리한 조단백다당류의 막분리 및 분무건조 특성

  • 홍주헌 (경북대학교 식품공학과) ;
  • 윤광섭 (대구가톨릭대학교 식품산업학부) ;
  • 최용희 (경북대학교 식품공학과)
  • Published : 2004.03.01

Abstract

This study was conducted to investigate the characteristics of ultrafiltration and spray drying process for crude protein bound polysaccharide(CPBP) isolated from Agaricus blasei Murill. In ultrafiltration process, the permeate flux increased with the increase of operating pressure and temperature. The permeate flux declined continuously while the fouling materials were accumulated on the membrane as the operation time increased. In comparing of raw CPBP and filtered CPBP, the viscosity of CPBP treated UF was decreased and $\Delta$E value of treated samples was increased. Thermal efficiencies of spray drying process were increased by increasing inlet temperature, feed rate and feed concentration.

η$_{evap}$분자량에 따라 다양한 생리활성을 나타내는 아가리쿠스버섯에서 분리한 조단백다당류를 고부가가치 기능성 소재로 개발하기 위하여 막분리 및 분무건조 공정에 따른 특성을 조사하였다. 아가리쿠스버섯 조단백다당류를 분자량 크기에 따라 여과하는 동안 공정온도에 따른 투과플럭스의 변화는 10 kDa와 130 kDa 모두에서 유사하였는데, 막분리 온도 및 압력이 증가함에 따라 비례적으로 증가하였으며, 4$0^{\circ}C$에서의 투과플럭스가 가장 높았다. 시간에 따른 투과플럭스의 변화는 막분리 30분 경과시 급속히 감소하였으며, pore size가 10 kDa와 150 kDa일 때 공정압력이 각각 1.2kgf/$\textrm{cm}^2$와 2kgf/$\textrm{cm}^2$에서 가장 높았다. 한외여과 후 아가리쿠스버섯 조단백다당류의 점도는 여과 전 13.9cP에서 여과후 10kDa이 하와 10∼150 kDa구간은 각각 10.8, 11.9cP로 점도가 저하되었으나, 150 kDa이상은 20.1cP로 점도가 증가되었다. 분자량 크기가 다른 3가지 분획물에 대한 분무건조 공정에서의 열효율성은 가열공기온도, 시료공급속도 및 농도가 증가할수록 열효율성이 증가함을 알 수 있었으며, 시료공급속도가 가장 중요한 영향인자임을 확인하였다.다.

Keywords

References

  1. Regina, C.R., Notoya, M. and Mario, S.M. (2001) Antimutagenic effects of the mushroom Agaricus blasei Murill extracts on V79 cells. Mutation Res., 496, 5-13 https://doi.org/10.1016/S1383-5718(01)00227-3
  2. Hirokazu, K., Aya, N., Takayuki, Y. and Takashi, M. (1988) Isolation and prorerties of a lectin from the fruiting bodies of Agaricus blasei. Carbohyd. Res., 183, 150-154 https://doi.org/10.1016/0008-6215(88)80057-0
  3. Qun, D., Jian, Y., Xiao, Y. and Jillian, F. (2002) Structural characterization of a water-soluble $\beta$-D-glucan from fruiting bodies of Agaricus blasei Murr. Carbohyd. Res., 337, 1417-1421 https://doi.org/10.1016/S0008-6215(02)00166-0
  4. Fujimiya, Y., Suzuki, Y., Oshima, K., Kobori, H. and Moriguchi, K. (1998) Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blasei Murill, mediated via natural killer activation and apoptosis. Cancer Immunol. Immunother., 46, 147-159 https://doi.org/10.1007/s002620050473
  5. Ebira, T. and Fujiyama, Y. (1998) Antitumor effect of peptide-glucan preparation extracted from Agaricus blasei in a double-grafted tumor system in mice. Biotherapy, 11, 259-265 https://doi.org/10.1023/A:1008054111445
  6. Hirokazu, K., Aya, N., Takayuki, Y. and Takashi, M. (1988) Isolation and prorerties of a lectin from the fruiting bodies of Agaricus blasei. Carbohyd. Res., 183, 150-154 https://doi.org/10.1016/0008-6215(88)80057-0
  7. Mizuno, T., Inagaki, R., Kanto, T., Hagiwara, T., Nakamura, T., Ito, H., Shimura, K., Sumiya, T. and Asakura, A (1990) Antitumor activity and some properties of water-insoluble polysaccharides from Himematsutake, the fruiting body of Agaricus blasei Murill. Agric. Biol. Chem., 54, 2897-2905 https://doi.org/10.1271/bbb1961.54.2897
  8. Mulder, M. (1991) Basic principle of Membrane Technology. Kluwer Academic Publishers. U.S.A., p.209-211
  9. Grandison, A.S. and Lewis, M.J. (1996) Separation processes in the food and biotechnology industries: Principles and Application. Woodhead publishing Ltd., England., p.97-102
  10. Bang, W.E. and Reineccius, G.A. (1990) Reineccius. Characterization of Selected Materials for Lemon Oil Encapsulation by Spray Drying. J. Food Sci., 55, 1356-1358 https://doi.org/10.1111/j.1365-2621.1990.tb03935.x
  11. Boatright, W.L. and Hettiarachchy N.S. (1995) Spray-Dried Soy Protein Isolate Solubility, Gelling Charancteristics, and extractable Protein as Affected by antioxidants. J. Food Sci., 60, 806-809 https://doi.org/10.1111/j.1365-2621.1995.tb06234.x
  12. Master, K. (1999) Spray drying handbook, Longman, Sci. & Tech., p.112-125
  13. Turker, M. and Hubble, J. (1987) Membrane fouling in a constant-flux ultrafiltration cell. J. Membrane Sci., 34, 267-281 https://doi.org/10.1016/S0376-7388(00)80039-3
  14. Kuo, K.P, and Cheryan, M. (1983) UltrafIltration of acid whey in a spiral wound unit: Effect of operating parameters on membrane fouling. J. Food Sci., 48, 1113-1118 https://doi.org/10.1111/j.1365-2621.1983.tb09172.x
  15. Belfort G., Davis, RH. and Zydney, A.L. (1994) The behavior of suspension and macromolecular solutions in crossflow microfIltration, J. Membrane Sci., 96, 51-58
  16. Crozes, G., Anselme, C. and Mallevialle, J. (1993) Effects of adsorption of organic matter on fouling of ultrafIltration membranes. J. Membrane Sci., 84, 61-77 https://doi.org/10.1016/0376-7388(93)85051-W
  17. Chiang, W.D., Shih, C.J. and Chu, Y,H. (1999) Functional properties of soy protein hydrolysate produced from a continuous membrane system. Food Chem., 65, 189-194 https://doi.org/10.1016/S0308-8146(98)00193-9
  18. Fukumoto, L.R., Delaquis, P. and Girard, B. (1998) Microfiltration and ultrafIltration ceramic membrane for apple juice clarification. J. Food Sci., 63, 845-850 https://doi.org/10.1111/j.1365-2621.1998.tb17912.x
  19. Straatsma, P., Van Houwelingen, G., Steenbergen, A.E, and De long, P. (1999) Spray drying of food products: J. simulation model. J. Food Eng., 42, 67-72 https://doi.org/10.1016/S0260-8774(99)00107-7
  20. Rosenberg, M., Talman, Y. and Kopelman, I.J. (1998) The microstructure of spray-dried microcapsules. Food Microstruct., 7, 15-23