DOI QR코드

DOI QR Code

Analysis of Reinforcement Effect of TSL (Thin Spray-on Liner) as Supports of Tunnel by Numerical Analysis

수치해석에 의한 터널 지보재로서 TSL(Thin Spray-on Liner)의 보강 효과 분석

  • Lee, Kicheol (Dept of Civil and Environmental Engineering) ;
  • Kim, Dongwook (Dept of Civil and Environmental Engineering) ;
  • Chang, Soo-Ho (Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Soon-Wook (Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Chulho (Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2017.11.20
  • Accepted : 2017.12.17
  • Published : 2017.12.30

Abstract

A TSL (Thin Spray-on Liner) has a higher initial strength and faster construction time than conventional cementitious shotcrete. Because of its high adhesion and tensile strength, the TSL reinforced concrete show a characteristic like composite materials. In this study, to consider an application to the conventional design method, ASD (allowable stress design), numerical study was used. In the numerical analysis, material and contact properties were adopt from previous studies. Then a thickness of concrete in the tunnel was evaluated with the TSL reinforced case by the ASD concept. In other words, bending compressive stress, bending tensile stress and shearing force of the concrete were considered to determine a thickness of concrete lining by the given boundary conditions. From the numerical analysis, there was no tendency to show by the ASD because the ASD is based on the elastic theory while the TSL typically contributes to reinforcement after yielding.

TSL(Thin Spray-on Liner)는 폴리머 성분을 주재료로 사용하며 숏크리트에 비해 높은 부착성능을 갖고 초기 강도가 높고 시공성이 좋으며 일부 방수재료로도 활용이 가능하다. 이러한 TSL의 특성으로 인해 TSL이 시공된 콘크리트는 TSL의 강한 부착력에 의해 복합 구조체로서 기능을 발휘한다. 본 연구에서는 이러한 TSL 특성을 기존 터널 설계법에 적용하기 위해 수치해석 연구를 수행하였다. 터널 콘크리트 라이닝 설계에 사용되는 허용응력설계법에서는 휨압축응력, 휨인장응력, 전단력을 기준으로 허용 수치 범위내에서 검토한다. 이에 대한 검토를 위해 기존 연구에서 제시된 TSL의 재료 물성과 접촉면 조건을 인용하여 TSL이 보강된 경우와 그렇지 않은 경우에 대해 서로 비교하였다. 기존 허용응력설계법을 사용하여 콘크리트의 설계 두께를 검토한 후 TSL을 적용하여 콘크리트의 설계 두께 감소 여부를 확인하는 방법으로 연구를 수행하였다. 해석결과, 탄성이론을 근거로한 허용응력설계법 내에서는 TSL의 보강효과를 검토하기 어려웠다.

Keywords

References

  1. ASTM D638 (2010), "Standard Test Method for Tensile Properties of Plastics" ASTM International, West Conshohocken, PA.
  2. Chang, S., Lee, G. P., Han, J. T. and Park, Y. T. (2015), "Development of a Powder-type Thin Spray-on Liner and its Performance Evaluation at Different Curing Ages", Tunnel & Undeerground Space, Vol.25, No.3, pp.293-302. (in Korean) https://doi.org/10.7474/TUS.2015.25.3.293
  3. EFNARC (2008), Specification and Guidelines on Thin Spray-on Liners for Mining and Tunnelling.
  4. Hofler, J. and Schlumpf, J. (2004), Shotcrete in Tunnel Construction, Putzmeister AG.
  5. Holter, K. G. (2016), "Performance of EVA-Based membranes for SCL in hard rock", Rock Mech. Rock Eng., Vol.49, pp.1329-1358. https://doi.org/10.1007/s00603-015-0844-5
  6. ITAtech (2013), ITAtech Design Guidance for Spray Applied Waterproofing Membranes, ITAtech Activity Group Lining and Waterproofing, ITAtech Report No.2.
  7. Kim, S. (2015), Estimation of the Thickness of NATM Tunnel Concrete Lining, Master Thesis, Korea University. (in Korean)
  8. Kim, Y, S. (2014), Modeling Contact with Abaqus/Standard, V-Eng., Next Printing. (in Korean)
  9. KR (2012), Allowable Stress Design Method, KR C-10030, KR(Korea Rail Network Authority). (in Korean)
  10. KR (2014), Concrete Lining, KR C-12040, KR (Korea Rail Network Authority). (in Korean)
  11. Lee, C., Chang, S. H., Lee, K. and Kim, D. (2015), "Numerical study on contact behavior of TSL (Thin Spray-on Liner)", Journal of Korean Tunnel Undergr Sp Assoc, Vol.17, No.6, pp.665-674. (in Korean) https://doi.org/10.9711/KTAJ.2015.17.6.665
  12. Lee, C., Lee, K., Kim, D., Choi, S. W., Kang, T. H. and Chang, S. H. (2017), "Numerical Study on Structural Reinforced Effects of Concrete Lining by Spray-applied Waterproofing Membrane", Journal of Korean Tunnelling and Underground Space Association, Vol.19, No.3, pp.551-565. (in Korean) https://doi.org/10.9711/KTAJ.2017.19.3.551
  13. Lee, S. P., Ryu, J. H., Lee, S. D., Jeon, S. and Lee, C. I. (2007), "Performance Improvement and Durability Evaluation of Shotcrete for Permanent Tunnel Support", Journal of Korean Society for Rock Mechanics, Vol.17, No.4, 2007, pp.266-284. (in Korean)
  14. Makhlouf, R. and Holter, K. (2008), "Rehabilitation of Concrete Lined Tunnels using a Composite Sprayed Liner with Sprayed Concrete and Sprayable Waterproofing Membrane", Proc. of ITA World Tunnel Congress 2008, Agra, India, pp.1175-1182.
  15. Midas (2013), [GTX NX] Analysis of Tunnel Lining. (in Korean)
  16. MOLIT (2007), Standard of Tunnel Design, MOLIT(Ministry of Land, Transport and Maritime Affairs). (in Korean)
  17. MOLIT (2012), Standard of Concrete and Structure, MOLIT (Ministry of Land, Transport and Maritime Affairs). (in Korean)
  18. Moon, H. D. (1999), "Evaluation on the Application of a Lattice Girder for a Support System in Tunneling", Journal of Korean Society for Rock Mechanics, Vol.9, pp.204-213. (in Korean)
  19. Park, J. J., Kim, Y. M., Hwang, T. J., and Jeong, S. S. (2011). "Numerical Analysis of Tunnel Lining under Loosening Load". Journal of the Korean Geotechnical Society, Vol.27 No.7, pp.35-45. (in Korean) https://doi.org/10.7843/kgs.2011.27.7.035
  20. Rose, D. (1982), "Revising Terzaghi's tunnel rock load coefficients", Proc. 23rd U.S. Symp. on Rock Mechanics, Berkeley, CA., AIME, New York, pp.953-960.
  21. SIMULIA (2014), 6.14 Documentation Collection., ABAQUS/CAE User's Manual.
  22. Thomas, A. (2009), Sprayed Concrete Lined Tunnels, Taylor & Francis, London.

Cited by

  1. 차수용 박층 멤브레인의 장기 성능 변화에 관한 실험 연구 vol.18, pp.4, 2019, https://doi.org/10.12814/jkgss.2019.18.4.015