• Title/Summary/Keyword: Split element method

Search Result 63, Processing Time 0.026 seconds

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED ELEMENT METHOD FOR SOBOLEV EQUATIONS WITH A CONVECTION TERM

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.35 no.5
    • /
    • pp.569-587
    • /
    • 2019
  • In this paper, we consider a split least-squares characteristic mixed element method for Sobolev equations with a convection term. First, to manipulate both convection term and time derivative term efficiently, we apply a characteristic mixed element method to get the system of equations in the primal unknown and the flux unknown and then get a least-squares minimization problem and a least-squares characteristic mixed element scheme. Finally, we obtain a split least-squares characteristic mixed element scheme for the given problem whose system is uncoupled in the unknowns. We prove the optimal order in $L^2$ and $H^1$ normed spaces for the primal unknown and the suboptimal order in $L^2$ normed space for the flux unknown.

A HIGHER ORDER SPLIT LEAST-SQUARES CHARACTERISTIC MIXED ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.38 no.3
    • /
    • pp.293-319
    • /
    • 2022
  • In this paper, we introduce a higher order split least-squares characteristic mixed element scheme for Sobolev equations. First, we use a characteristic mixed element method to manipulate both convection term and time derivative term efficiently and obtain the system of equations in the primal unknown and the flux unknown. Second, we define a least-squares minimization problem and a least-squares characteristic mixed element scheme. Finally, we obtain a split least-squares characteristic mixed element scheme for the given problem whose system is uncoupled in the unknowns. We establish the convergence results for the primal unknown and the flux unknown with the second order in a time increment.

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.19-34
    • /
    • 2016
  • In this paper, we present a split least-squares characteristic mixed finite element method(MFEM) to get the approximate solutions of the convection dominated Sobolev equations. First, to manage both convection term and time derivative term efficiently, we apply a least-squares characteristic MFEM to get the system of equations in the primal unknown and the flux unknown. Then, we obtain a split least-squares characteristic MFEM to convert the coupled system in two unknowns derived from the least-squares characteristic MFEM into two uncoupled systems in the unknowns. We theoretically prove that the approximations constructed by the split least-squares characteristic MFEM converge with the optimal order in L2 and H1 normed spaces for the primal unknown and with the optimal order in L2 normed space for the flux unknown. And we provide some numerical results to confirm the validity of our theoretical results.

Three-dimensional finite element analysis of hot square die extrusion by using split ALE method (분할된 ALE 방법에 의한 평금형 열간압출의 3차원 유한요소해석)

  • Kang, Yeon-Sick;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1912-1920
    • /
    • 1997
  • In the analysis of metal forming process, ALE(Arbitrary Lagrangian Eulerian) finite element methods have been increasingly used for the capability to control mesh independently from material flow. The methods can be divided into two groups i.e., coupled and split formulations. In the present work, the split ALE formulation is used for computational efficiency. A split ALE finite element method developed for rigid-viscoplastic materials and applied to the analysis of hot square die extrusion. Since thermal state greatly affects the product quality, an ALE scheme for temperature analysis is also presented. As computational examples, profile shapes as square and cross-like sections are chosen.

Analysis on the Qualitative Performance of a Power Split/Circulation Transmission (동력분기/순환구조 동력전달계의 정성적 성능 해석)

  • Lim, W.S.;Lee, D.J.;Lee, J.M.;Park, Y.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.212-223
    • /
    • 1995
  • To improve the efficiency of a power transmission system with slip elements, power split/circulation system is applied. The performance of a power split/circulation system varies widely by the change of the followings; the layout of system, the type and gear ratio of planetary gear, the performance of slip element, etc. Therefore, when one designs such a power transmission system or when one determines the economic/power mode of system, a certain performance prediction method is needed. In this study, the internal power flow pattern of a power split/circulation system is theoretically analyzed on several transmission systems. And an effective performance prediction method(so called performance locus diagram) is presented. By this method, the effects of design factors can be easily understood and the qualitative performances of system can be clearly evaluated.

  • PDF

A Stress Analysis on the Split-sleeve of Quick Pipe Coupling (파이프 신속결합장치 틈-슬리브에 미치는 응력분포 연구)

  • Pyo, Jin-Soo;Kang, Jin-Woo;Choi, Kwang-Suk;Kim, Youn-Jea
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.502-505
    • /
    • 2008
  • Due to continuous difficulty of human power supply, it is necessary to develop an equipment which is good to saving cost and time at a construction site. A quick pipe coupling method is the kind of mechanical joint system using split-sleeve and sealing-pad at pipe groove without welding. In hence, it provides restrained pipe joint which is simple, safe, and dependable without environmental pollutions. It is more useful scheme than the other ones. The purpose of this study is to find out the main design factors and the optimum shape of split-sleeve. The stress analyses were carried out under various shapes of pipe groove configuration, materials and internal pressures with a commercial software, ANSYS workbench which uses FEM(finite element method). Results are graphically depicted with various parameters.

  • PDF

Modified Split Panel Method Applied to the Analysis of Cavitating Propellers

  • Pyo, S.W.;Suh, J.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.13-23
    • /
    • 2000
  • A low-order potential based boundary element method is applied to the prediction of the flow around the cavitating propeller in steady or in unsteady inflow. For given cavitation number, the cavity shape is determined in an iterative manner until the kinematic and the dynamic boundary conditions are both satisfied on the approximate cavity boundary. In order to improve the solution behavior near the tip region, a hyperboloidal panel geometry and a modified split panel method are applied. The method is then extended to include the analysis of time-varying cavitating flows around the propeller blades via a time-step algorithm in time domain. In the method, the steady state oscillatory solution is obtained by incremental stepping in the itme domain. Finally, the present method is validated through comparison with other numerical results and experimental data.

  • PDF

Comparison of Residual Strain of Prestressed Concrete Beam Member by Different Analysis Method (해석법 차이에 의한 프리스트레스트 콘크리트 보부재의 잔류변형률 비교)

  • Lee, Duck Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • In the seismic design of building structural members, due to the complexity of the placement of PC steels in prestressed concrete members, it is necessary to review and define the definition of member damage in comparison with reinforced concrete members. In this study, the results of past experiments compared with the calculation results by 'section Analysis Method', with the aim of reviewing the precision of calculation results when member damage evaluation is performed using the section analysis method. Furthermore, it is also compared with the calculation results by the 'split Element Method'. In addition, parametric studies were carried out, and the influence of the difference between the amount of PC steels and reinforced bar on the residual strain was examined.

Seismic resistance of dry stone arches under in-plane seismic loading

  • Balic, Ivan;Zivaljic, Nikolina;Smoljanovic, Hrvoje;Trogrlic, Boris
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.243-257
    • /
    • 2016
  • The aim of this study is to investigate the seismic resistance of dry stone arches under in-plane seismic loading. For that purpose, several numerical analyses were performed using the combined finite-discrete element method (FDEM). Twelve types of arches with different ratios of a rise at the mid-span to the span, different thicknesses of stone blocks and different numbers of stone blocks in the arch were subjected to an incremental dynamic analysis based on excitation from three real horizontal and vertical ground motions. The minimum value of the failure peak ground acceleration that caused the collapse of the arch was adopted as a measure of the seismic resistance. In this study, the collapse mechanisms of each type of stone arch, as well as the influence of the geometry of stone blocks and stone arches on the seismic resistance of structures were observed. The conclusions obtained on the basis of the performed numerical analyses can be used as guidelines for the design of dry stone arches.

Prediction of Signal Propagation in Optical Fiber by SS-FEM (단계분할 유한 요소법에 의한 광섬유의 신호 전송 예측)

  • Jung, B.H.;Lee, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2441-2443
    • /
    • 1999
  • 광섬유에서 전송되는 신호의 예측을 위하여 편미분방정식인 비선형 슈래딩거 방정식(Nonlinear Schrodinger Equation, NLSE)을 단계분할 유한 요소법(Split-Step Finite Element Method, SS-FEM)을 적용하여 해석하였다. 수치결과를 해석적인 해가 알려진 솔리톤의 해로부터 전송되는 거리의 증가에 따라 각 단계마다 오차를 계산하였으며, 그 결과를 단계분할 푸리에법(Split-Step Fourier Method, SS-FM)에 의한 수치해와도 비교하였다.

  • PDF