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A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED

ELEMENT METHOD FOR SOBOLEV EQUATIONS WITH A

CONVECTION TERM

Mi Ray Ohm and Jun Yong Shin∗

Abstract. In this paper, we consider a split least-squares characteris-

tic mixed element method for Sobolev equations with a convection term.
First, to manipulate both convection term and time derivative term effi-

ciently, we apply a characteristic mixed element method to get the system

of equations in the primal unknown and the flux unknown and then get
a least-squares minimization problem and a least-squares characteristic

mixed element scheme. Finally, we obtain a split least-squares character-

istic mixed element scheme for the given problem whose system is uncou-
pled in the unknowns. We prove the optimal order in L2 and H1 normed

spaces for the primal unknown and the suboptimal order in L2 normed

space for the flux unknown.

1. Introduction

In this paper, we will consider a Sobolev equation with a convection term:

c(x )ut + d(x ) · ∇u−∇ · (a(u)∇ut + b(u)∇u)

= f(u), (x , t) ∈ Ω× (0, T ],

u(x , t) = 0, (x , t) ∈ ΓD × (0, T ],

(a(u)∇ut + b(u)∇u) · n = 0, (x , t) ∈ ΓN × (0, T ],

u(x , 0) = u0(x ), x ∈ Ω,

(1.1)

where Ω is a bounded convex domain in Rm with 1 ≤ m ≤ 3 with its boundary
∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, c(x ),d(x ), a(u), b(u), f(u), and u0(x ) are given
functions. We refer to [2, 21, 22] for the applications of the Sobolev equation
and to [8] for the existence and uniqueness results of the solutions of (1.1) .
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When d(x ) = 0, many numerical methods, such as mixed finite element
methods [11, 18, 20, 24], least-squares methods [12, 20, 23, 24], and discontinu-
ous Galerkin methods [14, 15] were employed to treat the problem numerically.
If we apply a conventional (least-squares) mixed finite element method, then
we have the coupled system of equations in two unknowns and some difficulties
in solving the coupled system. So, in [20], a split least-squares mixed finite
element method for reaction-diffusion problems is firstly introduced to solve the
uncoupled systems of equations in the unknowns.

When d(x ) 6= 0, we generally use a characteristic (mixed) finite element
method as one of the useful methods [1, 3, 4, 5, 6, 7, 10, 13] to reflect well the
physical character of a convection term and to treat efficiently both convection
term and time derivative term. Gao and Rui [9] introduced a split least-squares
characteristic mixed finite element method to approximate the primal unknown
u and the flux unknown −a∇u of the equation (1.1) and obtained the optimal
convergence in L2(Ω) norm for the primal unknown and in H(div,Ω) norm for
the flux unknown. And Zhang and Guo [25] introduced a split least-squares
characteristic mixed element method for nonlinear nonstationary convection-
diffusion problem to approximate the primal unknown and the flux unknown
and obtained the optimal convergence in L2(Ω) norm for the primal unknown
and inH(div,Ω) norm for the flux unknown. In [16], Ohm and Shin introduced a
split least-squares characteristic mixed element method to obtain the uncoupled
system of two equations. One is for the approximation of the primal unknown
u and the other is for the approximation of the flux unknown σ = −(a(x )∇ut+
b(x )∇u). And they proved the optimal order of convergence in L2 and H1

normed spaces for the approximations.
In this paper, we introduce a split least-squares characteristic mixed element

method to obtain two uncoupled system of equations. One is for the approxi-
mation of the primal unknown u and the other is for the approximation of the
flux unknown σ = −(a(u)∇ut + b(u)∇u). And we analyze the optimal order of
convergence in L2 and H1 normed spaces for the approximations of the primal
unknown u and the suboptimal order in L2 normed space for the approximations
of the flux unknown σ. The remainder of this paper is organized as follows.
In section 2, we introduce some assumptions and notations and in section 3,
we construct finite element spaces with approximation properties. In section 4,
we use a split least-squares characteristic mixed element method to construct
the approximations of the primal unknown and the unknown flux and obtain
the convergence of optimal order in L2 and H1 normed spaces for the primal
unknown and the convergence of suboptimal order in L2 normed space for the
flux unknown.
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2. Assumption and notations

For a nonnegative integer s and 1 ≤ p ≤ ∞, we denote by W s,p(Ω) the
Sobolev space with the norm

‖φ‖s,p =


( ∑
|k |≤s

∫
Ω
|Dkφ|pdx

)1/p

, 1 ≤ p <∞,

max|k |≤s esssup|Dkφ|, p =∞,

where k = (k1, k2, · · · , km), ki ≥ 0, is a multiindex of order |k | = k1 + k2 +

· · · + km and Dkφ = ∂|k|φ

∂x
k1
1 ∂x

k2
2 ···∂x

km
m

. If p = 2, we usually write Hs(Ω) =

W s,2(Ω) and ‖φ‖s = ‖φ‖s,2. And if s = 0, we simply write ‖φ‖ = ‖φ‖0. Let
Hs(Ω) = {u = (u1, u2, · · · , um) | ui ∈ Hs(Ω), 1 ≤ i ≤ m} with the norm

‖u‖s =
( m∑
i=1

‖ui‖2s
)1/2

. And let V = {v ∈ H1(Ω) : v = 0 on ΓD} and W =

{w ∈ H(div,Ω) : w · n = 0 on ΓN}.
If φ(x, t) belongs to a Sobolev space equipped with a norm ‖ · ‖X for each t,

then we let

‖φ(x, t)‖pLp(0,t0:X) =

∫ t0

0

‖φ(x, t)‖pXdt, for 1 ≤ p <∞,

‖φ(x, t)‖L∞(0,t0:X) = ess sup
0≤t≤t0

‖φ(x, t)‖X .

In case that t0 = T , we simply write Lp(X) = Lp(0, T : X) and L∞(X) =
L∞(0, T : X), respectively.

We consider the problem (1.1) with the coefficients satisfying the following
assumptions:
(A1) There exist c∗, c

∗, and d∗ such that 0 < c∗ < c(x ) ≤ c∗ and 0 < |d(x )| ≤
d∗ for all x ∈ Ω, where |d(x )| =

∑m
i=1 d

2
i (x ).

(A2) There exist a∗, a
∗, b∗, and b∗ such that 0 < a∗ < a(p) ≤ a∗ and 0 < b∗ <

b(p) ≤ b∗ for all p ∈ R.
(A3) ap(p), app(p), bp(p), and bpp(p) are bounded .
(A4) f(p) is Lipschitz continuous.

3. Finite element spaces

Before preceding our numerical scheme, we let Eh = {E1, E2, · · · , ENh
} be a

family of regular finite element subdivision of Ω. We let h denote the maximum
of the diameters of the elements of Eh. If m = 2, then Ei is a triangle or a
quadrilateral, and if m = 3, then Ei is a 3-simplex or 3-rectangle. Boundary
elements are allowed to have one curvilinear edge (or one curved surface).

We denote by Vh ×W h the Raviart-Thomas-Nedlec space of index k ≥ 0
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associated with Eh. And let Ph×Πh : V ×W → Vh×W h denote the Raviart-
Thomas projection [19] which satisfies{

(∇ ·w −∇ ·Πhw , χ) = 0, ∀χ ∈ Vh,
(v − Phv, χ) = 0, ∀χ ∈ Vh.

(3.1)

Then, (∇ · w , v − Phv) = 0 holds for each v ∈ V and each w ∈ W h and
div Πh = Ph div is a function from W onto Vh. The following approximation
properties are proved in [19]:

‖v − Phv‖+ h‖v − Phv‖1 ≤ Khr‖v‖r, ∀v ∈ V ∩Hr(Ω), 1 ≤ r ≤ k + 1,

‖w −Πhw‖ ≤ Khr‖w‖r, ∀w ∈W ∩Hr(Ω), 1 ≤ r ≤ k + 1,

‖∇ · (w −Πhw)‖ ≤ Khr‖∇ ·w‖r, ∀w ∈W ∩Hr(Ω), 0 ≤ r ≤ k + 1.

(3.2)

4. Error analysis

Let ν = ν(x , t) be the unit vector in the direction of (d(x ), c(x )). Then, the
directional derivative of u in the direction of ν is given as follows:

∂u

∂ν
=

c(x )

ψ(x )

∂u

∂t
+

d(x )

ψ(x )
· ∇u

where ψ(x ) =
(
c2(x ) + |d(x )|2

) 1
2

and |d(x )|2 =
m∑
i=1

d2
i (x ). So the problem

(1.1) becomes
ψ(x ) ∂u∂ν −∇ · (a(u)∇ut + b(u)∇u) = f(u), in Ω× (0, T ],

u(x , t) = 0, on ΓD × (0, T ],

(a(u)∇ut + b(u)∇u) · n = 0, on ΓN × (0, T ],

u(x , 0) = u0(x ), in Ω.

(4.1)

By denoting σ = −(a(u)∇ut + b(u)∇u), we can rewrite the problem (4.1) as

ψ(x ) ∂u∂ν +∇ · σ = f(u), in Ω× (0, T ],

σ + a(u)∇ut + b(u)∇u = 0, in Ω× (0, T ],

u(x , t) = 0, on ΓD × (0, T ],

σ · n = 0, on ΓN × (0, T ],

u(x , 0) = u0(x ), in Ω.

(4.2)

To discretize the problem (4.2), let ∆t = T/N be a time increment and tn = n∆t
for a positive integer N and n = 0, 1, · · · , N. Discretizing ψ(x ) ∂u∂ν at (x , tn) by
applying the backward Euler method along the direction of ν, we get

ψ(x )
∂u

∂ν
(x , tn) ∼= ψ(x )

u(x , tn)− u(x̂ , tn−1)√
|d(x)
c(x) ∆t|2 + (∆t)2

= c(x )
u(x , tn)− u(x̂ , tn−1)

∆t
,
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where x̂ = x − d̃(x )∆t with d̃(x ) = d(x)
c(x) . Therefore, from (4.2), we know that

for n ≥ 1, (un,σn) satisfies

c(x )u
n−ûn−1

∆t +∇ · σn = f(un−1) + En1 + En2 , in Ω,

σn + a(un−1)∇u
n−∇un−1

∆t + b(un−1)∇un = En3 + En4 in Ω,

un = 0, on ΓD,

σn · n = 0, on ΓN ,

u0 = u0(x ), in Ω,

(4.3)

where un = u(x , tn), ûn−1 = u(x̂ , tn−1), En1 = c(x )u
n−ûn−1

∆t − ψ(x ) ∂u∂ν (x , tn),

En2 = f(un) − f(un−1), En3 = a(un−1)∇u
n−∇un−1

∆t − a(un)∇unt , and En4 =

b(un−1)∇un − b(un)∇un. So, for first and second equations of (4.3), we obtain
the equivalent system of equations{
c(x )un + ∆t ∇ · σn = c(x )ûn−1 + ∆t(f(un−1) + En1 + En2 ),

σn∆t+ a(un−1)∇un + b(un−1)∇un∆t = a(un−1)∇un−1 + ∆t(En3 + En4 ),

and hence{
c(x )un + ∆t ∇ · σn = c(x )ûn−1 + ∆t(f(un−1) + En1 + En2 ),

σn∆t+A(un−1)∇un = a(un−1)∇un−1 + ∆t(En3 + En4 ),
(4.4)

where A(·) = a(·) + b(·)∆t. Therefore, from (4.4), we get
c(x )−1/2[c(x )un + ∆t ∇ · σn

−(c(x )ûn−1 + ∆t(f(un−1) + En1 + En2 ))] = 0,

A(un−1)−1/2[σn∆t+A(un−1)∇un

−(a(un−1)∇un−1 + ∆t(En3 + En4 ))] = 0.

(4.5)

For (v, τ ) ∈ V ×W , we define a least-squares functional J(v, τ ) as follows

J(v, τ ) =

‖c(x )−1/2[c(x )un + ∆t ∇ · σn − (c(x )ûn−1 + ∆t(f(un−1) + En1 + En2 ))]‖2

+ ‖A(un−1)−1/2[σn∆t+A(un−1)∇un − (a(un−1)∇un−1 + ∆t(En3 + En4 ))]‖2.

Then the least-squares minimization problem corresponding to (4.5) is given as
follows: find a solution (un,σn) ∈ V ×W such that

J(un,σn) = inf
(v,τ )∈V×W

J(v, τ ). (4.6)

Define the bilinear form B on (V ×W )2 by

B(w : u,σ; v, τ ) =
(
c(x )−1(c(x )u+ ∆t ∇ · σ), c(x )v + ∆t ∇ · τ

)
+
(
A(w)−1(A(w)∇u+ ∆tσ), A(w)∇v + ∆tτ

)
.

(4.7)
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Then the weak formulation of the minimization problem (4.6) is given as follows:
find (un,σn) ∈ V ×W such that

B(un−1 : un,σn; v, τ ) =(
c(x )−1(c(x )ûn−1 + ∆t( f(un−1) + En1 + En2 )), c(x )v + ∆t ∇ · τ

)
+
(
A(un−1)−1(a(un−1)∇un−1 + ∆t(En3 + En4 )), A(un−1)∇v + ∆tτ

)
,

(4.8)

for any (v, τ ) ∈ V ×W . Based on (4.8), we derive the following least-squares
characteristic MEM scheme: find approximation (unh,σ

n
h) ∈ Vh×W h satisfying

B(un−1
h : unh,σ

n
h; vh, τh) =(

c(x )−1(c(x )ûn−1
h + ∆tf(un−1

h )), c(x )vh + ∆t ∇ · τh
)

+
(
A(un−1

h )−1a(un−1
h )∇un−1

h , A(un−1
h )∇vh + ∆t τh

)
,

(u0
h, vh) = (u0, vh),

(4.9)

for any (vh, τh) ∈ Vh ×W h.

Lemma 4.1. For any (u,σ), (v, τ ) ∈ V ×W, we have

B(w : u,σ; v, τ ) =(c(x)u, v) + (∆t)2 (c(x)−1∇ · σ,∇ · τ )

+ (A(w)∇u,∇v) + (∆t)2 (A(w)−1σ, τ ).

Proof. From the definition of the bilinear form B in (4.7), we have

B(w : u,σ; v, τ )

=(c(x )u, v) + ∆t (∇ · σ, v) + ∆t (u,∇ · τ ) + (∆t)2 (c(x )−1∇ · σ,∇ · τ )

+ (A(w)∇u,∇v) + ∆t (∇u, τ ) + ∆t (σ,∇v) + (∆t)2 (A(w)−1σ, τ )

=(c(x )u, v) + (∆t)2 (c(x )−1∇ · σ,∇ · τ )

+ (A(w)∇u,∇v) + (∆t)2 (A(w)−1σ, τ ).

�

Letting vh = 0 in (4.9) and applying the definition of the bilinear form B, we
have

(∆t)2
(
(c(x )−1∇ · σnh,∇ · τh) + (A(un−1

h )−1σnh, τ
n
h)
)

=∆t(ûn−1
h ,∇ · τh) + (∆t)2(c(x )−1f(un−1

h ),∇ · τh)

+ ∆t(A(un−1
h )−1a(un−1

h )∇un−1
h , τh),
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and so

(c(x )−1∇ · σnh,∇ · τh) + (A(un−1
h )−1σnh, τ

n
h)

=
1

∆t
(ûn−1
h ,∇ · τh) + (c(x )−1f(un−1

h ),∇ · τh)

+
1

∆t
(A(un−1

h )−1a(un−1
h )∇un−1

h , τh).

Since

1−A(un−1
h )−1a(un−1

h ) = A(un−1
h )−1(A(un−1

h )− a(un−1
h ))

= ∆tA(un−1
h )−1b(un−1

h ),

we have

(c(x )−1∇ · σnh,∇ · τh) + (A(un−1
h )−1σnh, τ

n
h)

=
1

∆t
(ûn−1
h ,∇ · τh) + (c(x )−1f(un−1

h ),∇ · τh) +
1

∆t
(∇un−1

h , τh)

− (A(un−1
h )−1b(un−1

h )∇un−1
h , τh)

=
1

∆t
(∇(un−1

h − ûn−1
h ), τh) + (c(x )−1f(un−1

h ),∇ · τh)

− (A(un−1
h )−1b(un−1

h )∇un−1
h , τh).

Letting τh = 0 in (4.9) and applying the definition of the bilinear form B, we
have

(c(x )unh, vh) + (A(un−1
h )∇unh,∇vh) =(c(x )ûn−1

h , vh) + ∆t(f(un−1
h ), vh)

+ (a(un−1
h )∇un−1

h ,∇vh).

Therefore, we finally derive a split least-squares characteristic MEM: find ap-
proximations {unh,σnh} ∈ Vh ×W h satisfying:

(c(x )unh, vh) + (A(un−1
h )∇unh,∇vh)

= (c(x )ûn−1
h , vh) + ∆t(f(un−1

h ), vh) + (a(un−1
h )∇un−1

h ,∇vh)
(4.10)

(c(x )−1∇ · σnh,∇ · τh) + (A(un−1
h )−1σnh, τ

n
h)

=
1

∆t
(∇(un−1

h − ûn−1
h ), τh) + (c(x )−1f(unh),∇ · τh)

− (A(un−1
h )−1b(un−1

h )∇un−1
h , τh).

(4.11)

For the sake of the error analysis, we define a projection ũ(x, t) of u(x, t) onto
Vh satisfying{

(a(u)∇(u− ũ)t,∇vh) + (b(u)∇(u− ũ),∇vh) = 0, ∀vh ∈ Vh
(ũ(0), v) = (u0, v), ∀vh ∈ Vh.

(4.12)

Obviously, by the assumption (A2), there exists unique projection ũ(x, t) ∈ Vh.
Let η = u− ũ and ξ = uh − ũ and state the estimates of η below. Hereafter

a constant K denotes a generic positive constant depending on Ω and u, but
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independent of h and ∆t, and also any two Ks in different places don’t need to
be the same.

Lemma 4.2. Let u0 ∈ Hs(Ω), ut, utt ∈ Hs(Ω), ut ∈ L2(Hs(Ω)), and s ≥ 2. If
∇u, ut ∈ L∞(Ω× [0, T ]), then there exists a constant K, independent of h, such
that

(i) ‖η‖+ h‖η‖1 ≤ Khµ(‖ut‖L2(Hs(Ω)) + ‖u0‖s),
(ii) ‖ηt‖+ h‖ηt‖1 ≤ Khµ(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s),
(iii) ‖ηtt‖1 ≤ Khµ−1(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s + ‖utt‖s),

where µ = min(r + 1, s).

Proof. The proof of Lemma 4.2 is similar to ones of the results in [14, 15] �

Lemma 4.3. Let u0 ∈ Hs(Ω) and u, ut, utt ∈ L∞(Hs(Ω)) ∩ L∞(W 1,∞(Ω)). If
µ = min(r + 1, s) ≥ 1 + m

2 , then the following statements hold:

max{‖η‖∞, ‖∇η‖∞, ‖∇∂tη‖∞, ‖∇ηt‖∞, ‖∇ηtt‖∞} ≤ K̃.

Proof. The proof of Lemma 4.3 is similar to ones of the results in [17] �

Lemma 4.4. If u, ut, utt ∈ L∞(Hs(Ω)) ∩ L∞(W 1,∞(Ω)), then

‖En1 ‖ ≤ K∆t, ‖En2 ‖ ≤ K∆t, ‖En3 ‖ ≤ K∆t, and ‖En4 ‖ ≤ K∆t.

Proof. By applying Taylor’s expansion, we obviously have the estimations for
En1 ∼ En4 . �

Theorem 4.1. Assume that the hypotheses of Lemma 4.2 and Lemma 4.3 hold.
If ∆t = O(h), then

‖un − unh‖l ≤ K(hµ−l + ∆t), l = 0, 1,

where µ = min(k + 1, s).

Proof. From (4.4), we get

(c(x )un, v) + (A(un−1)∇un,∇v)

=(c(x )ûn−1, v) + ∆t (f(un−1), v) + ∆t (En1 , v) + ∆t (En2 , v)

+ (a(un−1)∇un−1,∇v) + ∆t (En3 ,∇v) + ∆t (En4 ,∇v).

(4.13)

for any (v, τ ) ∈ V ×W . So, from (4.10) and (4.13), we get

(c(x )un − c(x )unh, vh) + (A(un−1)∇un −A(un−1
h )∇unh,∇vh)

=(c(x )ûn−1 − c(x )ûn−1
h , vh) + ∆t(f(un−1)− f(un−1

h ), vh) + ∆t (En1 , vh)

+ ∆t (En2 , vh) + (a(un−1)∇un−1 − a(un−1
h )∇un−1

h ,∇vh)

+ ∆t (En3 ,∇vh) + ∆t (En4 ,∇vh)
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and hence

(c(x )(ηn − ξn), vh) + (A(un−1
h )(∇ηn −∇ξn),∇vh)

+ ((A(un−1)−A(un−1
h ))∇un,∇vh)

=(c(x )η̂n−1 − c(x )ξ̂n−1, vh) + ∆t(f(un−1)− f(un−1
h ), vh) + ∆t (En1 , vh)

+ ∆t (En2 , vh) + (a(un−1
h )∇(ηn−1 − ξn−1),∇vh)

+ ((a(un−1)− a(un−1
h ))∇un−1,∇vh) + ∆t (En3 ,∇vh) + ∆t (En4 ,∇vh).

Therefore we have

(c(x )ξn, vh) + (A(un−1
h )∇ξn,∇vh)− (a(un−1

h )∇ξn−1,∇vh)

=(c(x )ηn, vh) + (A(un−1
h )∇ηn,∇vh) + ((A(un−1)−A(un−1

h ))∇un,∇vh)

− (c(x )(η̂n−1 − ξ̂n−1), vh)−∆t(f(un−1)− f(un−1
h ), vh)−∆t (En1 , vh)

−∆t (En2 , vh)− (a(un−1
h )∇ηn−1,∇vh)

− ((a(un−1)− a(un−1
h ))∇un−1,∇vh)−∆t (En3 ,∇vh)−∆t (En4 ,∇vh).

Since

A(un−1
h )∇ξn − a(un−1

h )∇ξn−1 = a(un−1
h )(∇ξn −∇ξn−1) + ∆t b(un−1

h )∇ξn,

we have

(c(x )(ξn − ξn−1), vh) + (a(un−1
h )(∇ξn −∇ξn−1),∇vh)

+ ∆t(b(un−1
h )∇ξn,∇vh)

=(c(x )(ηn − η̂n−1), vh) + (c(x )(ξ̂n−1 − ξn−1), vh)

+ ((A(un−1)−A(un−1
h ))∇un,∇vh)− ((a(un−1)− a(un−1

h ))∇un−1,∇vh)

−∆t(f(un−1)− f(un−1
h ), vh)−∆t (En1 + En2 , vh)−∆t (En3 + En4 ,∇vh)

+ (A(un−1
h )∇ηn,∇vh)− (a(un−1

h )∇ηn−1,∇vh).

And since

((A(un−1)−A(un−1
h ))∇un,∇vh)− ((a(un−1)− a(un−1

h ))∇un−1,∇vh)

=((a(un−1)− a(un−1
h ))(∇un −∇un−1),∇vh)

+ ∆t((b(un−1)− b(un−1
h ))∇un,∇vh)

and

A(un−1
h )∇ηn − a(un−1

h )∇ηn−1

=(a(un−1
h )− a(un−1))(∇ηn −∇ηn−1) + a(un−1)(∇ηn −∇ηn−1 −∆t ∇ηnt )

+ ∆t(a(un−1)− a(un))∇ηnt + ∆t(b(un−1
h )− b(un−1))∇ηn

+ ∆t(b(un−1)− b(un))∇ηn + ∆t(a(un)∇ηnt + b(un)∇ηn),
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we have

(c(x )(ξn − ξn−1), vh) + (a(un−1
h )(∇ξn −∇ξn−1),∇vh)

+ ∆t (b(un−1
h )∇ξn,∇vh)

=(c(x )(ηn − η̂n−1), vh) + (c(x )(ξ̂n−1 − ξn−1), vh)

+ ((a(un−1)− a(un−1
h ))(∇un −∇un−1),∇vh)

+ ∆t((b(un−1)− b(un−1
h ))∇un,∇vh)−∆t(f(un−1)− f(un−1

h ), vh)

−∆t (En1 + En2 , vh)−∆t (En3 + En4 ,∇vh)

+ ((a(un−1
h )− a(un−1))(∇ηn −∇ηn−1),∇vh)

+ (a(un−1)(∇ηn −∇ηn−1 −∆t ∇ηnt ),∇vh)

+ ∆t((a(un−1)− a(un))∇ηnt ,∇vh)

+ ∆t((b(un−1
h )− b(un−1))∇ηn,∇vh)

+ ∆t((b(un−1)− b(un))∇ηn,∇vh)

(4.14)

Letting vh = ξn in (4,14), we have

(c(x )(ξn − ξn−1), ξn) + (a(un−1
h )(∇ξn −∇ξn−1),∇ξn)

+ ∆t (b(un−1
h )∇ξn,∇ξn)

=(c(x )(ηn − η̂n−1), ξn) + (c(x )(ξ̂n−1 − ξn−1), ξn)

+ ((a(un−1)− a(un−1
h ))(∇un −∇un−1),∇ξn)

+ ∆t((b(un−1)− b(un−1
h ))∇un,∇ξn)−∆t(f(un−1)− f(un−1

h ), ξn)

−∆t (En1 , ξ
n)−∆t (En2 , ξ

n)−∆t (En3 ,∇ξn)−∆t (En4 ,∇ξn)

+ ((a(un−1
h )− a(un−1))(∇ηn −∇ηn−1),∇ξn)

+ (a(un−1)(∇ηn −∇ηn−1 −∆t ∇ηnt ),∇ξn)

+ ∆t((a(un−1)− a(un))∇ηnt ,∇ξn)

+ ∆t((b(un−1
h )− b(un−1))∇ηn,∇ξn)

+ ∆t((b(un−1)− b(un))∇ηn,∇ξn) =

14∑
i=1

RAi.

(4.15)

Let n ≥ 2. We obtain the following lower bounds for three terms of the left-
hand side of (4.15):

LA1 = (c(x )(ξn − ξn−1), ξn) ≥ 1

2
(‖
√
c(x )ξn‖2 − ‖

√
c(x )ξn−1‖2)
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LA2 = (a(un−1
h )(∇ξn −∇ξn−1),∇ξn)

≥ 1

2
(‖
√
a(un−1

h )∇ξn‖2 − ‖
√
a(un−2

h )∇ξn−1‖2)

+
1

2
(‖
√
a(un−2

h )∇ξn−1‖2 − ‖
√
a(un−1

h )∇ξn−1‖2),

LA3 = ∆t (b(un−1
h )∇ξn,∇ξn) ≥ b∗∆t‖∇ξn‖2.

And for RA1 ∼ RA8, we have the following bounds

RA1 = (c(x )(ηn − η̂n−1), ξn)

= (c(x )(ηn − ηn−1, ξn) + (c(x )(ηn−1 − η̂n−1), ξn)

≤ K∆t[‖ηnt ‖ ‖ξn‖+ ‖ηn−1‖(‖ξn‖+ ‖∇ξn‖)]

≤ K∆t[‖ηnt ‖2 + ‖ηn−1‖2 + ‖
√
c(x )ξn‖2 + ‖

√
a(un−1

h )∇ξn‖2],

RA2 = (c(x )(ξ̂n−1 − ξn−1), ξn) ≤ K∆t‖∇ξn−1‖ ‖ξn‖

≤ K∆t[‖
√
c(x )ξn‖2 + ‖

√
a(un−1

h )∇ξn−1‖2],

RA3 = ((a(un−1)− a(un−1
h ))(∇un −∇un−1),∇ξn)

≤ K∆t[‖ηn−1‖+ ‖ξn−1‖] ‖∇ξn‖

≤ K∆t[‖ηn−1‖2 + ‖
√
c(x )ξn‖2 + ‖

√
a(un−1

h )∇ξn‖2],

RA4 = ∆t((b(un−1)− b(un−1
h ))∇un,∇ξn)

≤ K∆t[‖ηn−1‖+ ‖ξn−1‖] ‖∇ξn‖

≤ K∆t[‖ηn−1‖2 + ‖
√
c(x )ξn−1‖2 + ‖

√
a(un−1

h )∇ξn‖2],

RA5 = −∆t(f(un−1)− f(un−1
h ), ξn) ≤ K∆t[‖ηn−1‖+ ‖ξn−1‖] ‖ξn‖

≤ K∆t[‖ηn−1‖2 + ‖
√
c(x )ξn−1‖2 + ‖

√
c(x )ξn‖2],

RA6 = −∆t (En1 , ξ
n) ≤ K(∆t)2‖ξn‖ ≤ K∆t[(∆t)2 + ‖

√
c(x )ξn‖2],

RA7 = −∆t (En2 , ξ
n) ≤ K∆t[(∆t)2 + ‖

√
c(x )ξn‖2],

RA8 = −∆t (En3 ,∇ξn) ≤ K∆t[(∆t)2 + ‖
√
a(un−1

h )∇ξn‖2].

And for RA9 ∼ RA13, we have the following bounds

RA9 = −∆t (En4 ,∇ξn) ≤ K∆t[(∆t)2 + ‖
√
a(un−1

h )∇ξn‖2],

RA10 = ((a(un−1
h )− a(un−1))(∇ηn −∇ηn−1),∇ξn)

≤ K∆t[‖ηn−1‖2 + ‖
√
c(x )ξn−1‖2 + ‖

√
a(un−1

h )∇ξn‖2],
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RA11 = (a(un−1)(∇ηn −∇ηn−1 −∆t ∇ηnt ),∇ξn) ≤ K(∆t)2‖∇ξn‖

≤ K∆t[(∆t)2 + ‖
√
a(un−1

h )∇ξn‖2],

RA12 = ∆t((a(un−1)− a(un))∇ηnt ,∇ξn)

≤ K∆t ‖∇ηnt ‖∞[(∆t)2 + ‖
√
a(un−1

h )∇ξn‖2]

≤ K∆t[(∆t)2 + ‖
√
a(un−1

h )∇ξn‖2],

RA13 = ∆t((b(un−1
h )− b(un−1))∇ηn,∇ξn)

≤ K∆t ‖∇ηn‖∞[‖ηn−1‖+ ‖ξn−1‖] ‖∇ξn‖

≤ K∆t [‖ηn−1‖2 + ‖
√
c(x )ξn−1‖2 + ‖

√
a(un−1

h )∇ξn‖2],

RA14 = ∆t((b(un−1)− b(un))∇ηn,∇ξn)

≤ K∆t[(∆t)2 + ‖
√
a(un−1

h )∇ξn‖2].

Thus, using all bounds for LA1 ∼ LA3 and RA1 ∼ RA14, we obtain from (4.15)

1

2
(‖
√
c(x )ξn‖2 − ‖

√
c(x )ξn−1‖2)

+
1

2
(‖
√
a(un−1

h )∇ξn‖2 − ‖
√
a(un−2

h )∇ξn−1‖2) + b∗∆t‖∇ξn‖2

≤ 1

2
(‖
√
a(un−1

h )∇ξn−1‖2 − ‖
√
a(un−2

h )∇ξn−1‖2)

+K∆t[‖ηn−1‖2 + ‖ηnt ‖2 + ‖
√
c(x )ξn−1‖2

+ ‖
√
c(x )ξn‖2 + ‖

√
a(un−1

h )∇ξn‖2 + (∆t)2].

(4.16)

Notice that

‖
√
a(un−1

h )∇ξn−1‖2 − ‖
√
a(un−2

h )∇ξn−1‖2

≤ K∆t‖∇ξn−1‖2.

So, we obtain from (4.16)

1

2
(‖
√
c(x )ξn‖2 − ‖

√
c(x )ξn−1‖2)

+
1

2
(‖
√
a(un−1

h )∇ξn‖2 − ‖
√
a(un−2

h )∇ξn−1‖2) + b∗∆t‖∇ξn‖2

≤ K∆t[‖ηn−1‖2 + ‖ηnt ‖2 + ‖ξn−1‖2 + ‖ξn‖2

+ ‖∇ξn−1‖2 + ‖∇ξn‖2 + (∆t)2].

(4.17)
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Now, summing both sides of (4.17) from n = 2 to k and using the assumptions
on a and b, we get

‖ξk‖2 + ‖∇ξk‖2 + ∆t

k∑
n=2

‖∇ξn‖2

≤ K(‖ξ1‖2 + ‖∇ξ1‖2)

+K∆t

k∑
n=1

[‖ηn‖2 + ‖ηnt ‖2 + ‖ξn‖2 + ‖∇ξn‖2 + (∆t)2]

(4.18)

Letting n = 1 in (4.15) and using the fact that ξ0 = 0, we obtain

(c(x )ξ1, ξ1) + (a(u0
h)∇ξ1,∇ξ1) + ∆t (b(u0

h)∇ξ1,∇ξ1)

=(c(x )(η1 − η̂0), ξ1)

+ ((a(u0)− a(u0
h))(∇u1 −∇u0),∇ξ1)

+ ∆t((b(u0)− b(u0
h))∇u1,∇ξ1)

−∆t (E1
1 + E1

2 , vh)−∆t (E1
3 + E1

4 ,∇ξ1)

+ ((a(u0
h)− a(u0))(∇η1 −∇η0),∇ξ1)

+ (a(u0)(∇η1 −∇η0 −∆t ∇η1
t ),∇ξ1)

+ ∆t((a(u0)− a(u1))∇η1
t ,∇ξ1) + ∆t((b(u0

h)− b(u0))∇η1,∇ξ1)

+ ∆t((b(u0)− b(u1))∇η1,∇ξ1).

Following similar calculations for the estimates, it is obvious that

‖ξ1‖2 + ‖∇ξ1‖2 + ∆t ‖∇ξ1‖2

≤ K∆t[‖η1
t ‖2 + ‖η0‖2 + ‖ξ1‖2 + ‖∇ξ1‖2 + (∆t)2].

So, by Lemma 4.2, we have

‖ξ1‖2 + ‖∇ξ1‖2 + ∆t ‖∇ξ1‖2 ≤ K∆t[h2µ + (∆t)2] (4.19)

for sufficiently small ∆t. So, applying Gronwall’s inequality, Lemma 4.2, and
(4.19) to (4.18), we have

‖ξk‖2 + ‖∇ξk‖2 ≤ K[h2µ + (∆t)2]. (4.20)

Thus, by the triangular inequality and Lemma 4.2, we obtain the result of this
theorem.

�

For σ = (σ1, σ2) ∈ W , let σ̃ = (σ̃1, σ̃2) be a projection of σ onto W h

satisfying

(c(x )−1∇ · (σ − σ̃),∇ · τ ) + λ(σ − σ̃, τ ) = 0, ∀τ ∈W h, (4.21)

where λ is a positive real number. The existence of σ̃ can be obtained from the
Lax-Milgram lemma.
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Lemma 4.5. Let σ ∈ W ∩Hs(Ω). Then there exists a constant K > 0 such
that

‖∇ · (σ − σ̃)‖+ ‖σ − σ̃‖ ≤ Khµ−1‖σ‖s,

where µ = min(k + 1, s).

Proof. By the difinition of σ̃, we get

‖c(x )−
1
2∇ · (σ − σ̃)‖2 + λ‖σ − σ̃‖2

=
(
c(x )−1∇ · (σ − σ̃), ∇ · (σ − σ̃

)
+ λ(σ − σ̃,σ − σ̃)

=
(
c(x )−1∇ · (σ − σ̃), ∇ · (σ −Πhσ)

)
+ λ(σ − σ̃,σ −Πhσ)

≤‖c(x )−
1
2∇ · (σ − σ̃)‖‖c(x )−

1
2∇ · (σ −Πhσ)‖+ λ‖σ − σ̃‖‖σ −Πhσ‖

and so, by (3.2),

‖c(x )−
1
2∇ · (σ − σ̃)‖2 + λ‖σ − σ̃‖2

≤ ‖c(x )−
1
2∇ · (σ −Πhσ)‖2 + λ‖Πhσ − σ̃‖2

≤ Kh2(µ−1)‖σ‖2s,
for sufficiently small λ > 0. �

For our error analysis, we let π = σ−σ̃ and ρ = σ̃−σh. Then σ−σh = π+ρ.

Theorem 4.2. Assume that the hypotheses of Theorem 4.1 hold. Let σ ∈
W ∩Hs(Ω). Then we have

‖∇ · (σn − σnh‖+ ‖σn − σnh‖ ≤ K(hµ−1 + (∆t)). (4.22)

where µ = min(k + 1, s).

Proof. First, we will prove that

‖∇ · ρn‖+ ‖ρn‖ ≤ K(hµ−1 + (∆t)).

By applying Lemma 4.1 to (4.8) with v = 0, we get

(∆t)2 (c(x )−1∇ · σn, ;∇ · τ ) + (∆t)2 (A(un−1)−1σn, τ )

=
(
c(x )−1(c(x )ûn−1 + ∆t (f(un−1) + En1 + En2 )), ∆t ∇ · τ

)
+
(
A(un−1)−1(a(un−1)∇un−1 + ∆t (En3 + En4 )), ∆t τ

)
,

and so, we get

(c(x )−1∇ · σn,∇ · τ ) + (A(un−1)−1σn, τ )

=
1

∆t

(
ûn−1,∇ · τ

)
+
(
c(x )−1(f(un−1) + En1 + En2 ),∇ · τ

)
+

1

∆t

(
A(un−1)−1a(un−1)∇un−1, τ

)
+
(
A(un−1)−1(En3 + En4 ), τ

)
.

(4.23)
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Since

1−A(un−1)−1a(un−1) = A(un−1)−1(A(un−1)− a(un−1))

= ∆tA(un−1)−1b(un−1),

we have from (4.23)

(c(x )−1∇ · σn,∇ · τ ) + (A(un−1)−1σn, τ )

=
1

∆t

(
∇(un−1 − ûn−1), τ

)
+
(
c(x )−1(f(un−1) + En1 + En2 ),∇ · τ

)
−
(
A(un−1)−1b(un−1)∇un−1, τ

)
+
(
A(un−1)−1(En3 + En4 ), τ

)
.

(4.24)

Similarly, we have

(c(x )−1∇ · σnh,∇ · τh) + (A(un−1
h )−1σnh, τ

n
h)

=
1

∆t
(∇(un−1

h − ûn−1
h ), τh) + (c(x )−1f(un−1

h ),∇ · τh)

− (A(un−1
h )−1b(un−1

h )∇un−1
h , τh).

(4.25)

Therefore, from (4.24) and (4.25), we have

(c(x )−1(∇ · σn −∇ · σnh), ∇ · τh) + (A(un−1)−1σn −A(un−1
h )−1σnh, τ

n
h)

=
1

∆t

(
∇(un−1 − un−1

h − ûn−1 + ûn−1
h ), τh

)
+
(
c(x )−1En1 , ∇ · τh

)
+
(
c(x )−1En2 ,∇ · τh

)
+
(
c(x )−1(f(un−1)− f(un−1

h )),∇ · τh
)

−
(
A(un−1)−1b(un−1)∇un−1 −A(un−1

h )−1b(un−1
h )∇un−1

h , τh

)
+
(
A(un−1)−1En3 , τh

)
+
(
A(un−1)−1En4 , τh

)
and hence

(c(x )−1(∇ · σn −∇ · σnh), ∇ · τh) + (A(un−1
h )−1(σn − σnh), τnh)

=
(

(A(un−1
h )−1 −A(un−1)−1)σn, τnh

)
+

1

∆t

(
∇(un−1 − un−1

h ), τh

)
− 1

∆t

(
∇(ûn−1 − ûn−1

h ), τh

)
+
(
c(x )−1En1 ,∇ · τh

)
+
(
c(x )−1En2 ,∇ · τh

)
+
(
c(x )−1(f(un−1)− f(un−1

h )),∇ · τh
)

−
(
A(un−1)−1b(un−1)∇un−1 −A(un−1

h )−1b(un−1
h )∇un−1

h , τh

)
+
(
A(un−1)−1En3 , τh

)
+
(
A(un−1)−1En4 , τh

)
.

(4.26)
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Therefore, we have from (4.26)

(c(x )−1∇ · ρn,∇ · τh) + (A(un−1
h )−1ρn, τnh)

=− (c(x )−1∇ · πn,∇ · τh)− (A(un−1
h )−1πn, τnh)

+
(

(A(un−1
h )−1 −A(un−1)−1)σn, τnh

)
+

1

∆t

(
∇(ηn−1 − η̂n−1), τh

)
− 1

∆t

(
∇(ξn−1 − ξ̂n−1), τh

)
+
(
c(x )−1En1 ,∇ · τh

)
+
(
c(x )−1En2 ,∇ · τh

)
+
(
c(x )−1(f(un−1)− f(un−1

h )),∇ · τh
)

−
(

(A(un−1)−1 −A(un−1
h )−1)b(un−1)∇un−1, τh

)
−
(
A(un−1

h )−1(b(un−1)− b(un−1
h ))∇un−1, τh

)
−
(
A(un−1

h )−1b(un−1
h )(∇un−1 −∇un−1

h ), τh

)
+
(
A(un−1)−1En3 , τh

)
+
(
A(un−1)−1En4 , τh

)
.

(4.27)

Choosing τh = ρn in (4.27), we obtain

(c(x )−1∇ · ρn,∇ · ρn) + (A(un−1
h )−1ρn,ρn)

=− (c(x )−1∇ · πn,∇ · ρn)− (A(un−1
h )−1πn,ρn)

+
(

(A(un−1
h )−1 −A(un−1)−1)σn,ρn

)
+

1

∆t

(
∇(ηn−1 − η̂n−1),ρn

)
− 1

∆t

(
∇(ξn−1 − ξ̂n−1),ρn

)
+
(
c(x )−1En1 ,∇ · ρn

)
+
(
c(x )−1En2 ,∇ · ρn

)
+
(
c(x )−1(f(un−1)− f(un−1

h )),∇ · ρn
)

−
(

(A(un−1)−1 −A(un−1
h )−1)b(un−1)∇un−1,ρn

)
−
(
A(un−1

h )−1(b(un−1)− b(un−1
h ))∇un−1,ρn

)
−
(
A(un−1

h )−1b(un−1
h )(∇un−1 −∇un−1

h ),ρn
)

+
(
A(un−1)−1En3 ,ρ

n
)

+
(
A(un−1)−1En4 ,ρ

n
)

=

13∑
n=1

Si.

(4.28)

Note that

A(·)−1 =
1

a(·) + ∆tb(·)
≤ 1

a∗

and

A(un−1)−1 −A(un−1
h )−1 =

A(un−1
h )−A(un−1)

A(un−1)A(un−1
h )

≤ K|ξn−1 − ηn−1|.
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For S1 ∼ S5, we obtain the following bounds

S1 = λ(πn,ρn) ≤ K‖πn‖2 + ε‖ρn‖2,
S2 ≤ K‖πn‖2 + ε‖ρn‖2,
S3 ≤ K(‖ξn−1‖2 + ‖ηn−1‖2) + ε‖ρn‖2

S4 ≤ K‖∇ηn−1‖2 + ε‖∇ · ρn‖2,
S5 ≤ K‖∇ξn−1‖2 + ε‖∇ · ρn‖2.

And for S6, S7, S12, and S13, we get the bounds

S6 ≤ K(4t)2 + ε‖∇ · ρn‖2,
S7 ≤ K(4t)2 + ε‖∇ · ρn‖2,
S12 ≤ K(4t)2 + ε‖ρn‖2,
S13 ≤ K(4t)2 + ε‖ρn‖.

And for S8, S9, and S10, we get the bounds

S8 ≤ K(‖ξn−1‖2 + ‖ηn−1‖2) + ε‖∇ · ρn‖2,
S9 ≤ K(‖ξn−1‖2 + ‖ηn−1‖2) + ε‖ρn‖2,
S10 ≤ K(‖ξn−1‖2 + ‖ηn−1‖2) + ε‖ρn‖2.

And for S11, we get the bound

S11 = −
(
A(un−1

h )−1b(un−1
h )(∇un−1 −∇un−1

h ),ρn
)

≤ K(‖ξn−1‖2 + ‖ηn−1‖2) + ε‖ρn‖2 + ε‖∇ · ρn‖2.

Thus, by using these estimates for S1 ∼ S13 , Lemma 4.2, Lemma 4.5, and
(4.20), we get from (4.27)

‖∇ · ρn‖2 + ‖ρn‖2

≤K
(
‖πn‖2 + ‖ηn−1‖2 + ‖∇ηn−1‖2 + ‖ξn−1‖2 + ‖∇ξn−1‖2 + (∆t)2

)
≤K

(
h2(µ−1) + (∆t)2

)
and so

‖∇ · ρn‖+ ‖ρn‖ ≤ K(hµ−1 + (∆t)).

Thus by the triangular inequality and Lemma 4.5, we obtain the result of this
theorem.

�
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