• Title/Summary/Keyword: Spectroscopy Analysis

Search Result 3,221, Processing Time 0.031 seconds

Comparison of Near-Infrared Spectroscopy with Raman Spectroscopy from the Point of Nondestructive Analysis of Biological Materials

  • Takeyuki Tanaka;Hidetoshi Sato;Jung, Young-Mee;Yukihiro Ozaki
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.9-20
    • /
    • 2000
  • Recently, near-infrared (NIR) spectroscopy and Raman spectroscopy have received keen interest as powerful techniques for nondestructive analysis of biological materials. The purpose of this review paper is to compare the advantages of NIR and Raman spectroscopy in the nondestructive analysis. Both methods are quite unique and often complementary. For example. NIR spectroscopy is very useful in monitoring in situ the content of components inside biological materials while Raman spectroscopy is very suitable for identifying micro-components on the surface of biological materials. In this article specific characters of the two spectroscopic methods are discussed first and then several examples of applications of NIR and Raman spectroscopy to the biological nondestructive analysis are introduced.

Surface analysis using Raman spectroscopy during semiconductor processing (라만 분광법을 이용한 반도체 공정 중 표면 분석)

  • Tae Min Choi;JinUk Yoo;Eun Su Jung;Chae Yeon Lee;Hwa Rim Lee;Dong Hyun Kim;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.71-85
    • /
    • 2024
  • This article provides an overview of Raman spectroscopy and its practical applications for surface analysis of semiconductor processes including real-time monitoring. Raman spectroscopy is a technique that uses the inelastic scattering of light to provide information on molecular structure and vibrations. Since its inception in 1928, Raman spectroscopy has undergone continuous development, and with the advent of SERS(Surface Enhanced Raman Spectroscopy), TERS(Tip Enhanced Raman Spectroscopy), and confocal Raman spectroscopy, it has proven to be highly advantageous in nano-scale analysis due to its high resolution, high sensitivity, and non-destructive nature. In the field of semiconductor processing, Raman spectroscopy is particularly useful for substrate stress and interface characterization, quality analysis of thin films, elucidation of etching process mechanisms, and detection of residues.

Qualitative and Quantitative Analysis of Space Minerals using Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy (레이저 유도 분해 분광법과 라만 분광법을 이용한 우주 광물의 정성 및 정량 분석 기법)

  • Kim, Dongyoung;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2018
  • In order to analyze space resources, it had to be brought to earth. However, using laser-induced breakdown spectroscopy(LIBS) and Raman spectroscopy, it is possible to analyze qualitative and quantitative analysis of space minerals in real time. LIBS is a spectroscopic method in which a high energy laser is concentrated on a material surface to generate a plasma, and the emitted light is acquired through a spectroscope to analyze the atomic composition. Raman spectroscopy is a spectroscopic method that analyzes the molecular structure by measuring scattered light. These two spectroscopic methods are complementary spectroscopic methods for analyzing the atoms and molecules of unknown minerals and have an advantage as space payloads. In this study, data were analyzed qualitatively by using principal component analysis(PCA). In addition, a mixture of two minerals was prepared and a quantitative analysis was performed to predict the concentration of the material.

Raman Chemical Imaging Technology for Food and Agricultural Applications

  • Qin, Jianwei;Kim, Moon S.;Chao, Kuanglin;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.170-189
    • /
    • 2017
  • Purpose: This paper presents Raman chemical imaging technology for inspecting food and agricultural products. Methods The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. Results & Conclusions: The main topics include Raman scattering principles, Raman spectroscopy measurement techniques (e.g., backscattering Raman spectroscopy, transmission Raman spectroscopy, and spatially offset Raman spectroscopy), Raman image acquisition methods (i.e., point-scan, line-scan, and area-scan methods), Raman imaging instruments (e.g., excitation sources, wavelength separation devices, detectors, imaging systems, and calibration methods), and Raman image processing and analysis techniques (e.g., fluorescence correction, mixture analysis, target identification, spatial mapping, and quantitative analysis). Raman chemical imaging applications for food safety and quality evaluation are also reviewed.

Three-Dimensional Fluid Flow Analysis of Photoacoustic Spectroscopy Cell for Measurement of Automotive Exhaust Gas (자동차 배출가스 측정을 위한 Photoacoustic Spectroscopy Cell의 3차원 유동장 해석)

  • 김현철;박종호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Recently, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle. Especially, exhaust emission from diesel vehicles are blown to be harmful to human health and environment. Photoacoustic Spectroscopy system is very useful technology for simultaneous and continuous measurement of the various components of the automotive exhaust gas. In this study, in order to reduce emission gases from automobile, we tried to develop the measurement system of Photoacoustic Spectroscopy. To improve performance of high sensitive Photoacoustic Spectroscopy system for automotive exhaust emissions, the shape of Photoacoustic Spectroscopy cell was optimized to use the flow analysis. And Exhaust emission data of the 1,500cc gasoline engine was fixed the working fluid. The characteristics of fluid flow for cell were analyzed by various conditions in detail.

Trends in non- destructive analysis using near infrared spectroscopy in food industry (식품 산업에서의 근적외선 분광법을 이용한 비파괴 분석법 동향)

  • Park, Jong-Rak
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.2-22
    • /
    • 2022
  • Near-infrared spectroscopy (NIRS) is one of the representative non-destructive and eco-friendly analysis methods used for rapid analysis of various ingredients in the food industry. To develop analysis model with NIRS, Chemometrics are applied after pre-treatment of spectrum. Many studies have been reviewed on the analysis of general and functional components for agricultural and livestock products. In the case of livestock products, some studies have been conducted for on-line analysis. This study investigated results on various samples and component applying near-infrared spectroscopy. Furthermore, the results according to sample condition were compared. It was confirmed that NIRS is applied to various fields in the food industry.

A Novel Classification of Polymorphs Using Combined LIBS and Raman Spectroscopy

  • Han, Dongwoo;Kim, Daehyoung;Choi, Soojin;Yoh, Jack J.
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.402-411
    • /
    • 2017
  • Combined LIBS-Raman spectroscopy has been widely studied, due to its complementary capabilities as an elemental analyzer that can acquire signals of atoms, ions, and molecules. In this study, the classification of polymorphs was performed by laser-induced breakdown spectroscopy (LIBS) to overcome the limitation in molecular analysis; the results were verified by Raman spectroscopy. LIBS signals of the $CaCO_3$ polymorphs calcite and aragonite, and $CaSO_4{\cdot}2H_2O$ (gypsum) and $CaSO_4$ (anhydrite), were acquired using a Nd:YAG laser (532 nm, 6 ns). While the molecular study was performed using Raman spectroscopy, LIBS could also provide sufficient key data for classifying samples containing different molecular densities and structures, using the peculiar signal ratio of $5s{\rightarrow}4p$ for the orbital transition of two polymorphs that contain Ca. The basic principle was analyzed by electronic motion in plasma and electronic transition in atoms or ions. The key factors for the classification of polymorphs were the different electron quantities in the unit-cell volume of each sample, and the selection rule in electric-dipole transitions. The present work has extended the capabilities of LIBS in molecular analysis, as well as in atomic and ionic analysis.

Rapid Compositional Analysis of Naphtha by Near-Infrared Spectroscopy

  • 구민식;정호일;이준식
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1189-1193
    • /
    • 1998
  • The determination of total paraffin, naphthene, and aromatic (PNA) contents in naphtha samples, which were directly obtained from actual refining process, has been studied using near-infrared (NIR) spectroscopy. Each of the total PNA concentrations in naphtha has been successfully analyzed using NIR spectroscopy. Partial least squares (PLS) regression method has been utilized to quantify the total PNA contents in naphtha from the NIR spectral bands. The NIR calibration results showed an excellent correlation with those of conventional gas chromatography (GC). Due to its rapidity and accuracy, NIR spectroscopy is appeared as a new analytical technique which can be substituted for the conventional GC method for the quantitative analysis of petrochemical products including naphtha.

In-situ Endpoint Detection for Dielectric Films Plasma Etching Using Plasma Impedance Monitoring and Self-plasma Optical Emission Spectroscopy with Modified Principal Component Analysis

  • Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.153-153
    • /
    • 2012
  • Endpoint detection with plasma impedance monitoring and self-plasma optical emission spectroscopy is demonstrated for dielectric layers etching processes. For in-situ detecting endpoint, optical-emission spectroscopy (OES) is used for in-situ endpoint detection for plasma etching. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. To overcome these problems, the endpoint was determined by impedance signal variation from I-V monitoring (VI probe) and self-plasma optical emission spectroscopy. In addition, modified principal component analysis was applied to enhance sensitivity for small area etching. As a result, the sensitivity of this method is increased about twice better than that of OES. From plasma impedance monitoring and self-plasma optical emission spectroscopy, properties of plasma and chamber are analyzed, and real-time endpoint detection is achieved.

  • PDF

Near Infrared Reflectance Spectroscopy for Non-Invasive Measuring of Internal Quality of Apple Fruit

  • Sohn, Mi-Ryeong;Park, Woo-Churl;Cho, Rae-Kwang
    • Near Infrared Analysis
    • /
    • v.1 no.1
    • /
    • pp.27-30
    • /
    • 2000
  • In this study, we investigated the feasibility of non-destructive determination of internal quality factors of Fuji apple fruit using near infrared(NIR) reflectance spectroscopy and developed the calibration models. As the reference methods, refractometer, titration and texture analyzer for sugar content, acidity and firmness were used, respectively. Samples were scanned from 1100∼2500nm with InfraAlyzer 500C spectrometer and SESAME software was used for data analysis. A multiple linear regression(MLR) analysis was performed to develop the calibrations. The correlation coefficient(R) and standard error of prediction(SEP) were as follows; 0.91, 0.41$^{\circ}$Brix for sugar content, 0.90, 0.04% for acidity and 0.84, 0.094 kg for firmness, respectively. This study shows that NIR spectroscopy can be used to evaluate the sugar content acidity and firmness of apple fruit with acceptable accuracy.