DOI QR코드

DOI QR Code

A Novel Classification of Polymorphs Using Combined LIBS and Raman Spectroscopy

  • Han, Dongwoo (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Daehyoung (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Choi, Soojin (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jack J. (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2017.01.31
  • Accepted : 2017.06.07
  • Published : 2017.08.25

Abstract

Combined LIBS-Raman spectroscopy has been widely studied, due to its complementary capabilities as an elemental analyzer that can acquire signals of atoms, ions, and molecules. In this study, the classification of polymorphs was performed by laser-induced breakdown spectroscopy (LIBS) to overcome the limitation in molecular analysis; the results were verified by Raman spectroscopy. LIBS signals of the $CaCO_3$ polymorphs calcite and aragonite, and $CaSO_4{\cdot}2H_2O$ (gypsum) and $CaSO_4$ (anhydrite), were acquired using a Nd:YAG laser (532 nm, 6 ns). While the molecular study was performed using Raman spectroscopy, LIBS could also provide sufficient key data for classifying samples containing different molecular densities and structures, using the peculiar signal ratio of $5s{\rightarrow}4p$ for the orbital transition of two polymorphs that contain Ca. The basic principle was analyzed by electronic motion in plasma and electronic transition in atoms or ions. The key factors for the classification of polymorphs were the different electron quantities in the unit-cell volume of each sample, and the selection rule in electric-dipole transitions. The present work has extended the capabilities of LIBS in molecular analysis, as well as in atomic and ionic analysis.

Keywords

References

  1. N. Prieto-Taboada, O. Gomez-Laserna, I. Martínez-Arkarazo, M. A. Olazabal, and J. M. Madariaga, "Raman spectra of the different phases in the $CaSO_4-H_2O$ system," Anal. Chem. 86(20), 10131-10137 (2014). https://doi.org/10.1021/ac501932f
  2. M. D. Dyar, E. Breves, E. Jawin, G. Marchand, M. Nelms, V. O'Connor, S. Peel, Y. Rothstein, E. C. Sklute, and M. D. Lane, "What lurks in the martian rocks and soil? investigations of sulfates, phosphates, and perchlorates. Mössbauer parameters of iron in sulfate minerals," Am. Mineral. 98(11-12), 1943-1965 (2013). https://doi.org/10.2138/am.2013.4604
  3. K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, and D. Anglos, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
  4. F. C. D. Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, "Laser-induced breakdown spectroscopy analysis of energetic materials," Appl. Opt. 42(30), 6148-6152 (2003). https://doi.org/10.1364/AO.42.006148
  5. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, "Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for application to space exploration," Appl. Spectrosc. 54(3), 331-340 (2000). https://doi.org/10.1366/0003702001949591
  6. F. Rull, J. Martinez-Frias, A. Sansano, J. Medina, and H. G. M. Edwards, "Comparative micro-Raman study of the Nakhla and Vaca Muerta meteorites," J. Raman Spectrosc. 35(6), 497-503 (2004). https://doi.org/10.1002/jrs.1177
  7. A. Wang, J. J. Freeman, B. L. Jolliff, and I.-M. Chou, "Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates," Geochim. Cosmochim. Acta 70(24), 6118-6135 (2006). https://doi.org/10.1016/j.gca.2006.05.022
  8. R. J. Hemley, "Pressure dependence of Raman spectra of $SiO_2$ Polymorphs: ${\alpha}$-quartz, coesite, and stishovite," High-Pressure Res. Miner. Phys. 347 (1987).
  9. M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, "A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis," Spectrochim. Acta Part B: At. Spectrosc. 64(11), 1219-1227 (2009). https://doi.org/10.1016/j.sab.2009.09.004
  10. R. Bruder, V. Detalle, and C. Coupry, "An example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysis," J. Raman Spectrosc. 38(7), 909-915 (2007). https://doi.org/10.1002/jrs.1685
  11. A. Giakoumaki, I. Osticioli, and D. Anglos, "Spectroscopic analysis using a hybrid LIBS-Raman system," Appl. Phys. A 83(4), 537-541 (2006). https://doi.org/10.1007/s00339-006-3541-0
  12. J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, J. J. Laserna, "Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform," Anal. Chem. 82(4), 1389-1400 (2010). https://doi.org/10.1021/ac902470v
  13. J. Moros, J. A. Lorenzo, and J. J. Laserna, "Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion," Anal. Bioanal. Chem. 400(10), 3353-3365 (2011). https://doi.org/10.1007/s00216-011-4999-y
  14. S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, "Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust," Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 68(4), 1036-1045 (2007). https://doi.org/10.1016/j.saa.2007.06.046
  15. G. B. Courreges-Lacoste, B. Ahlers, and F. R. Perez, "Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars," Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 68(4), 1023-1028 (2007). https://doi.org/10.1016/j.saa.2007.03.026
  16. A. Frebel, J. E. Norris, W. Aoki, S. Honda, M. S. Bessell, M. Takada-Hidai, T. C. Beers, and N. Christlieb, "Chemical abundance analysis of the extremely metal-poor star HE 1300 + 0157," Astrophys. J. 658(1), 534-552 (2007). https://doi.org/10.1086/511517
  17. R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. Francois, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbuy, P. Bonifacio, P. Molaro, and B. Nordstrom, "First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy," Astron. Astrophys. 416(3), 1117-1138 (2004). https://doi.org/10.1051/0004-6361:20034074
  18. B Emmoth, M. Braun, J. Bromander, and I. Martinson, "Lifetimes of excited levels in Ca I - Ca III," Phys. Scr. 12(1-2), 75-79 (1975). https://doi.org/10.1088/0031-8949/12/1-2/008
  19. J. E. Stalnaker, Y. L. Coq, T. M. Fortier, S. A. Diddams, C. W. Oates, and L. Hollberg, "Measurement of excitedstate transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopy," Phys. Rev. A 75(4), 040502 (2007). https://doi.org/10.1103/PhysRevA.75.040502
  20. L. Pasternack, D. R. Yarkony, P. J. Dagdigian, and D. M. Silver, "Experimental and theoretical study of the Ca I 4s3d $^1D-4s2\;^1S$ and 4s4p $^3P1-4s^2$ 1S forbidden transitions," J. Phys. B: At. Mol. Phys. 13(11), 2231-2241 (1980). https://doi.org/10.1088/0022-3700/13/11/014
  21. N. H. D. Leeuw and S. C. Parker, "Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach," J. Phys. Chem. B 102 (16), 2914-2922 (1998). https://doi.org/10.1021/jp973210f
  22. A. Pavese, M. Catti, G. D. Price, and R. A. Jackson, "Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data," Phys. Chem. of Miner. 19(2), 80-87 (1992). https://doi.org/10.1007/BF00198605
  23. B. Xu and K. M. Poduska, "Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals," Phys. Chem. Chem. Phys. 16(33), 17634-17639 (2014). https://doi.org/10.1039/C4CP01772B
  24. David Barthelmy (http://webmineral.com/, (1997-2014).
  25. Hudson Institute of Mineralogy (http://www.mindat.org/), (1993-2015).
  26. The University of Liverpool (http://www.chemtube3d.com/solidstate/SS-CaCO3.htm), (2008-2015).
  27. J. Liu, M. M. Ossowski, J. R. Hardy, C. Duan, and W. N. Mei, "Simulation of structural transformation in aragonite $CaCO_3$," AIP Conference Proceedings, 2000.
  28. F. M. Hossain, G. E. Murch, I. V. Belova, and B. D. Turner, "Electronic, optical and bonding properties of $CaCO_3$ calcite," Solid State Commun. 149(29), 1201-1203 (2009). https://doi.org/10.1016/j.ssc.2009.04.026
  29. J. Peric, M. Vucak, R. Krstulovic, L. Brecevic, and D. Kralj, "Phase transformation of calcium carbonate polymorphs," Thermochim. Acta 277, 175-186 (1996). https://doi.org/10.1016/0040-6031(95)02748-3
  30. NIST (http://physics.nist.gov/PhysRefData/Handbook/Tables/calciumtable5.htm), (2010-2015).
  31. E. S. A. Seif, "Geotechnical characteristics of anhydrite/gypsum transformation in the middle miocene evaporites, red sea coast, Egypt," Arabian J. Sci. Eng. 39(1), 247-260 (2014). https://doi.org/10.1007/s13369-013-0857-x
  32. G. Azimi and V. G. Papangelakis, "Mechanism and kinetics of gypsum-anhydrite transformation in aqueous electrolyte solutions," Hydrometallurgy 108(1), 122-129 (2011). https://doi.org/10.1016/j.hydromet.2011.03.007

Cited by

  1. Integrated instrumentation for combined laser-induced breakdown and Raman spectroscopy pp.1525-6030, 2019, https://doi.org/10.1080/10739149.2018.1564052