References
-
N. Prieto-Taboada, O. Gomez-Laserna, I. Martínez-Arkarazo, M. A. Olazabal, and J. M. Madariaga, "Raman spectra of the different phases in the
$CaSO_4-H_2O$ system," Anal. Chem. 86(20), 10131-10137 (2014). https://doi.org/10.1021/ac501932f - M. D. Dyar, E. Breves, E. Jawin, G. Marchand, M. Nelms, V. O'Connor, S. Peel, Y. Rothstein, E. C. Sklute, and M. D. Lane, "What lurks in the martian rocks and soil? investigations of sulfates, phosphates, and perchlorates. Mössbauer parameters of iron in sulfate minerals," Am. Mineral. 98(11-12), 1943-1965 (2013). https://doi.org/10.2138/am.2013.4604
- K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, and D. Anglos, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
- F. C. D. Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, "Laser-induced breakdown spectroscopy analysis of energetic materials," Appl. Opt. 42(30), 6148-6152 (2003). https://doi.org/10.1364/AO.42.006148
- A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, "Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for application to space exploration," Appl. Spectrosc. 54(3), 331-340 (2000). https://doi.org/10.1366/0003702001949591
- F. Rull, J. Martinez-Frias, A. Sansano, J. Medina, and H. G. M. Edwards, "Comparative micro-Raman study of the Nakhla and Vaca Muerta meteorites," J. Raman Spectrosc. 35(6), 497-503 (2004). https://doi.org/10.1002/jrs.1177
- A. Wang, J. J. Freeman, B. L. Jolliff, and I.-M. Chou, "Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates," Geochim. Cosmochim. Acta 70(24), 6118-6135 (2006). https://doi.org/10.1016/j.gca.2006.05.022
-
R. J. Hemley, "Pressure dependence of Raman spectra of
$SiO_2$ Polymorphs:${\alpha}$ -quartz, coesite, and stishovite," High-Pressure Res. Miner. Phys. 347 (1987). - M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, "A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis," Spectrochim. Acta Part B: At. Spectrosc. 64(11), 1219-1227 (2009). https://doi.org/10.1016/j.sab.2009.09.004
- R. Bruder, V. Detalle, and C. Coupry, "An example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysis," J. Raman Spectrosc. 38(7), 909-915 (2007). https://doi.org/10.1002/jrs.1685
- A. Giakoumaki, I. Osticioli, and D. Anglos, "Spectroscopic analysis using a hybrid LIBS-Raman system," Appl. Phys. A 83(4), 537-541 (2006). https://doi.org/10.1007/s00339-006-3541-0
- J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, J. J. Laserna, "Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform," Anal. Chem. 82(4), 1389-1400 (2010). https://doi.org/10.1021/ac902470v
- J. Moros, J. A. Lorenzo, and J. J. Laserna, "Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion," Anal. Bioanal. Chem. 400(10), 3353-3365 (2011). https://doi.org/10.1007/s00216-011-4999-y
- S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, "Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust," Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 68(4), 1036-1045 (2007). https://doi.org/10.1016/j.saa.2007.06.046
- G. B. Courreges-Lacoste, B. Ahlers, and F. R. Perez, "Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars," Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 68(4), 1023-1028 (2007). https://doi.org/10.1016/j.saa.2007.03.026
- A. Frebel, J. E. Norris, W. Aoki, S. Honda, M. S. Bessell, M. Takada-Hidai, T. C. Beers, and N. Christlieb, "Chemical abundance analysis of the extremely metal-poor star HE 1300 + 0157," Astrophys. J. 658(1), 534-552 (2007). https://doi.org/10.1086/511517
- R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. Francois, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbuy, P. Bonifacio, P. Molaro, and B. Nordstrom, "First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy," Astron. Astrophys. 416(3), 1117-1138 (2004). https://doi.org/10.1051/0004-6361:20034074
- B Emmoth, M. Braun, J. Bromander, and I. Martinson, "Lifetimes of excited levels in Ca I - Ca III," Phys. Scr. 12(1-2), 75-79 (1975). https://doi.org/10.1088/0031-8949/12/1-2/008
- J. E. Stalnaker, Y. L. Coq, T. M. Fortier, S. A. Diddams, C. W. Oates, and L. Hollberg, "Measurement of excitedstate transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopy," Phys. Rev. A 75(4), 040502 (2007). https://doi.org/10.1103/PhysRevA.75.040502
-
L. Pasternack, D. R. Yarkony, P. J. Dagdigian, and D. M. Silver, "Experimental and theoretical study of the Ca I 4s3d
$^1D-4s2\;^1S$ and 4s4p$^3P1-4s^2$ 1S forbidden transitions," J. Phys. B: At. Mol. Phys. 13(11), 2231-2241 (1980). https://doi.org/10.1088/0022-3700/13/11/014 - N. H. D. Leeuw and S. C. Parker, "Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach," J. Phys. Chem. B 102 (16), 2914-2922 (1998). https://doi.org/10.1021/jp973210f
- A. Pavese, M. Catti, G. D. Price, and R. A. Jackson, "Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data," Phys. Chem. of Miner. 19(2), 80-87 (1992). https://doi.org/10.1007/BF00198605
- B. Xu and K. M. Poduska, "Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals," Phys. Chem. Chem. Phys. 16(33), 17634-17639 (2014). https://doi.org/10.1039/C4CP01772B
- David Barthelmy (http://webmineral.com/, (1997-2014).
- Hudson Institute of Mineralogy (http://www.mindat.org/), (1993-2015).
- The University of Liverpool (http://www.chemtube3d.com/solidstate/SS-CaCO3.htm), (2008-2015).
-
J. Liu, M. M. Ossowski, J. R. Hardy, C. Duan, and W. N. Mei, "Simulation of structural transformation in aragonite
$CaCO_3$ ," AIP Conference Proceedings, 2000. -
F. M. Hossain, G. E. Murch, I. V. Belova, and B. D. Turner, "Electronic, optical and bonding properties of
$CaCO_3$ calcite," Solid State Commun. 149(29), 1201-1203 (2009). https://doi.org/10.1016/j.ssc.2009.04.026 - J. Peric, M. Vucak, R. Krstulovic, L. Brecevic, and D. Kralj, "Phase transformation of calcium carbonate polymorphs," Thermochim. Acta 277, 175-186 (1996). https://doi.org/10.1016/0040-6031(95)02748-3
- NIST (http://physics.nist.gov/PhysRefData/Handbook/Tables/calciumtable5.htm), (2010-2015).
- E. S. A. Seif, "Geotechnical characteristics of anhydrite/gypsum transformation in the middle miocene evaporites, red sea coast, Egypt," Arabian J. Sci. Eng. 39(1), 247-260 (2014). https://doi.org/10.1007/s13369-013-0857-x
- G. Azimi and V. G. Papangelakis, "Mechanism and kinetics of gypsum-anhydrite transformation in aqueous electrolyte solutions," Hydrometallurgy 108(1), 122-129 (2011). https://doi.org/10.1016/j.hydromet.2011.03.007
Cited by
- Integrated instrumentation for combined laser-induced breakdown and Raman spectroscopy pp.1525-6030, 2019, https://doi.org/10.1080/10739149.2018.1564052