DOI QR코드

DOI QR Code

Trends in non- destructive analysis using near infrared spectroscopy in food industry

식품 산업에서의 근적외선 분광법을 이용한 비파괴 분석법 동향

  • Park, Jong-Rak (Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry)
  • 박종락 (농림식품기술기획평가원)
  • Received : 2022.02.08
  • Accepted : 2022.02.23
  • Published : 2022.03.30

Abstract

Near-infrared spectroscopy (NIRS) is one of the representative non-destructive and eco-friendly analysis methods used for rapid analysis of various ingredients in the food industry. To develop analysis model with NIRS, Chemometrics are applied after pre-treatment of spectrum. Many studies have been reviewed on the analysis of general and functional components for agricultural and livestock products. In the case of livestock products, some studies have been conducted for on-line analysis. This study investigated results on various samples and component applying near-infrared spectroscopy. Furthermore, the results according to sample condition were compared. It was confirmed that NIRS is applied to various fields in the food industry.

Keywords

References

  1. Armstrong, P., Maghirang, E., Xie, F., Dowell, F. (2006). Comparison of dispersive and Fourier-transform NIR instruments for measuring grain and flour attributes. Applied Engineering in Agriculture, 22(3), 453-457. https://doi.org/10.13031/2013.20448
  2. Barlocco, N., Vadell, A., Ballesteros, F., Galietta, G., Cozzolino, D. (2006). Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy. Animal Science, 82(1), 111-116. https://doi.org/10.1079/ASC20055
  3. Barnes, R., Dhanoa, M. S., Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied spectroscopy, 43(5), 772-777. https://doi.org/10.1366/0003702894202201
  4. Berhow, M. A., Singh, M., Bowman, M. J., Price, N. P., Vaughn, S. F., Liu, S. X. (2020). Quantitative NIR determination of isoflavone and saponin content of ground soybeans. Food Chemistry, 317, 126373. https://doi.org/10.1016/j.foodchem.2020.126373
  5. Camacho, W., Valles-Lluch, A., Ribes-Greus, A., Karlsson, S. (2003). Determination of moisture content in nylon 6, 6 by near-infrared spectroscopy and chemometrics. Journal of applied polymer science, 87(13), 2165-2170. https://doi.org/10.1002/app.11595
  6. Carlini, P., Massantini, R., Mencarelli, F. (2000). Vis-NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection. Journal of Agricultural and Food Chemistry, 48(11), 5236-5242. https://doi.org/10.1021/jf000408f
  7. Cho, H.-S., Ryu, J.-H., Liu, J. J. (2011). Development of an On-line Measurement Method for Clean Biofuel Based on Near Infrared Spectroscopy and Chemometrics. Clean Technology, 17(3), 215-224. https://doi.org/10.7464/KSCT.2011.17.3.215
  8. Correia, R. M., Tosato, F., Domingos, E., Rodrigues, R. R., Aquino, L. F. M., Filgueiras, P. R., Lacerda Jr, V., Romao, W. (2018). Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta, 176, 59-68. https://doi.org/10.1016/j.talanta.2017.08.009
  9. Cozzolino, D. (2009). Near infrared spectroscopy in natural products analysis. Planta medica, 75(07), 746-756. https://doi.org/10.1055/s-0028-1112220
  10. Cozzolino, D., Murray, I. (2002). Effect of sample presentation and animal muscle species on the analysis of meat by near infrared reflectance spectroscopy. Journal of Near Infrared Spectroscopy, 10(1), 37-44. https://doi.org/10.1255/jnirs.319
  11. Davey, M. W., Saeys, W., Hof, E., Ramon, H., Swennen, R. L., Keulemans, J. (2009). Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. Journal of Agricultural and Food Chemistry, 57(5), 1742-1751. https://doi.org/10.1021/jf803137d
  12. De Marchi, M., Manuelian, C. L., Ton, S., Manfrin, D., Meneghesso, M., Cassandro, M., Penasa, M. (2017). Prediction of sodium content in commercial processed meat products using near infrared spectroscopy. Meat Science, 125, 61-65. https://doi.org/10.1016/j.meatsci.2016.11.014
  13. De Marchi, M., Penasa, M., Battagin, M., Zanetti, E., Pulici, C., Cassandro, M. (2011). Feasibility of the direct application of near-infrared reflectance spectroscopy on intact chicken breasts to predict meat color and physical traits. Poultry Science, 90(7), 1594-1599. https://doi.org/10.3382/ps.2010-01239
  14. De Marchi, M., Penasa, M., Cecchinato, A., Bittante, G. (2013). The relevance of different near infrared technologies and sample treatments for predicting meat quality traits in commercial beef cuts. Meat Science, 93(2), 329-335. https://doi.org/10.1016/j.meatsci.2012.09.013
  15. De Marchi, M., Riovanto, R., Penasa, M., Cassandro, M. (2012). At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy. Meat Science, 90(3), 653-657. https://doi.org/10.1016/j.meatsci.2011.10.009
  16. de Oliveira, G. A., de Castilhos, F., Renard, C. M.-G. C., Bureau, S. (2014). Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food research international, 60, 154-162. https://doi.org/10.1016/j.foodres.2013.10.051
  17. de Souza, A. M., Filgueiras, P. R., Coelho, M. R., Fontana, A., Winkler, T. C. B., Valderrama, P., Poppi, R. J. (2016). Validation of the near infrared spectroscopy method for determining soil organic carbon by employing a proficiency assay for fertility laboratories. Journal of Near Infrared Spectroscopy, 24(3), 293-303. https://doi.org/10.1255/jnirs.1219
  18. Dickens, J. E. (2010). Overview of process analysis and PAT. spectroscopic tools and implemetation strategies for the chemical and pharmaceutical industries. Process analytical technology: Spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries, 1-15.
  19. Fragoso, S., Acena, L., Guasch, J., Busto, O., Mestres, M. (2011). Application of FT-MIR spectroscopy for fast control of red grape phenolic ripening. Journal of Agricultural and Food Chemistry, 59(6), 2175-2183. https://doi.org/10.1021/jf104039g
  20. Guthrie, J., Greensill, C., Bowden, R., Walsh, K. (2004). Assessment of quality defects in macadamia kernels using NIR spectroscopy. Australian journal of agricultural research, 55(4), 471-476. https://doi.org/10.1071/AR03179
  21. Guy, F., Prache, S., Thomas, A., Bauchart, D., Andueza, D. (2011). Prediction of lamb meat fatty acid composition using near-infrared reflectance spectroscopy (NIRS). Food Chemistry, 127(3), 1280-1286. https://doi.org/10.1016/j.foodchem.2011.01.084
  22. Herrera, J., Guesalaga, A., Agosin, E. (2003). Shortwave-near infrared spectroscopy for non-destructive determination of maturity of wine grapes. Measurement Science and Technology, 14(5), 689. https://doi.org/10.1088/0957-0233/14/5/320
  23. Huck, C., Guggenbichler, W., Bonn, G. (2005). Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry. Analytica chimica acta, 538(1-2), 195-203. https://doi.org/10.1016/j.aca.2005.01.064
  24. Jamrogiewicz, M. (2012). Application of the near-infrared spectroscopy in the pharmaceutical technology. Journal of pharmaceutical and biomedical analysis, 66, 1-10. https://doi.org/10.1016/j.jpba.2012.03.009
  25. Kapper, C., Klont, R., Verdonk, J., Urlings, H. (2012). Prediction of pork quality with near infrared spectroscopy (NIRS): 1. Feasibility and robustness of NIRS measurements at laboratory scale. Meat Science, 91(3), 294-299. https://doi.org/10.1016/j.meatsci.2012.02.005
  26. Kim, Y. J., Lee, H. J., Shin, H. S., Shin, Y. (2014). Near-infrared reflectance spectroscopy as a rapid and non-destructive analysis tool for curcuminoids in turmeric. Phytochemical Analysis, 25(5), 445-452. https://doi.org/10.1002/pca.2514
  27. Liao, Y.-T., Fan, Y.-X., Cheng, F. (2010). On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy. Meat Science, 86(4), 901-907. https://doi.org/10.1016/j.meatsci.2010.07.011
  28. Liu, C., Liu, W., Chen, W., Yang, J., Zheng, L. (2015). Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Food Chemistry, 173, 482-488. https://doi.org/10.1016/j.foodchem.2014.10.052
  29. Lucas, A., Andueza, D., Rock, E., Martin, B. (2008). Prediction of dry matter, fat, pH, vitamins, minerals, carotenoids, total antioxidant capacity, and color in fresh and freeze-dried cheeses by visible-near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 56(16), 6801-6808. https://doi.org/10.1021/jf800615a
  30. Macho, S., Larrechi, M. (2002). Near-infrared spectroscopy and multivariate calibration for the quantitative determination of certain properties in the petrochemical industry. TrAC Trends in Analytical Chemistry, 21(12), 799-806. https://doi.org/10.1016/S0165-9936(02)01202-5
  31. Magwaza, L. S., Naidoo, S. I. M., Laurie, S. M., Laing, M. D., Shimelis, H. (2016). Development of NIRS models for rapid quantification of protein content in sweetpotato [Ipomoea batatas (L.) LAM.]. LWT-Food Science and Technology, 72, 63-70. https://doi.org/10.1016/j.lwt.2016.04.032
  32. Melfsen, A., Hartung, E., Haeussermann, A. (2012). Accuracy of milk composition analysis with near infrared spectroscopy in diffuse reflection mode. Biosystems engineering, 112(3), 210-217. https://doi.org/10.1016/j.biosystemseng.2012.04.003
  33. Mourot, B.-P., Gruffat, D., Durand, D., Chesneau, G., Mairesse, G., Andueza, D. (2015). Breeds and muscle types modulate performance of near-infrared reflectance spectroscopy to predict the fatty acid composition of bovine meat. Meat Science, 99, 104-112. https://doi.org/10.1016/j.meatsci.2014.08.014
  34. Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest biology and technology, 46(2), 99-118. https://doi.org/10.1016/j.postharvbio.2007.06.024
  35. Niu, X., Zhao, Z., Jia, K., Li, X. (2012). A feasibility study on quantitative analysis of glucose and fructose in lotus root powder by FT-NIR spectroscopy and chemometrics. Food Chemistry, 133(2), 592-597. https://doi.org/10.1016/j.foodchem.2012.01.064
  36. Ortiz-Somovilla, V., Espana-Espana, F., Gaitan-Jurado, A., Perez-Aparicio, J., De Pedro-Sanz, E. (2007). Proximate analysis of homogenized and minced mass of pork sausages by NIRS. Food Chemistry, 101(3), 1031-1040. https://doi.org/10.1016/j.foodchem.2006.02.058
  37. Park, J. R., Kang, H. H., Cho, J. K., Moon, K. D., Kim, Y. J. (2020). Application of non-destructive rapid determination of Piperine in Piper nigrum L.(black pepper) using NIR and multivariate statistical analysis: a promising quality control tool. Foods, 9(10), 1437. https://doi.org/10.3390/foods9101437
  38. Park, J. R., Kang, H. H., Cho, J. K., Moon, K. D., Kim, Y. J. (2020). Feasibility of rapid piperine quantification in whole and black pepper using near infrared spectroscopy and chemometrics. Journal of Food Science, 85(10), 3094-3101. https://doi.org/10.1111/1750-3841.15428
  39. Porep, J. U., Kammerer, D. R., Carle, R. (2015). On-line application of near infrared (NIR) spectroscopy in food production. Trends in Food Science & Technology, 46(2), 211-230. https://doi.org/10.1016/j.tifs.2015.10.002
  40. Prieto, N., Ross, D., Navajas, E., Richardson, R., Hyslop, J., Simm, G., Roehe, R. (2011). Online prediction of fatty acid profiles in crossbred Limousin and Aberdeen Angus beef cattle using near infrared reflectance spectroscopy. animal, 5(1), 155-165. https://doi.org/10.1017/s1751731110001618
  41. Pullanagari, R. R., Yule, I. J., Agnew, M. (2015). On-line prediction of lamb fatty acid composition by visible near infrared spectroscopy. Meat Science, 100, 156-163. https://doi.org/10.1016/j.meatsci.2014.10.008
  42. Rinnan, A., Van Den Berg, F., Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201-1222. https://doi.org/10.1016/j.trac.2009.07.007
  43. Riovanto, R., De Marchi, M., Cassandro, M., Penasa, M. (2012). Use of near infrared transmittance spectroscopy to predict fatty acid composition of chicken meat. Food Chemistry, 134(4), 2459-2464. https://doi.org/10.1016/j.foodchem.2012.04.038
  44. Salguero-Chaparro, L., Pena-Rodriguez, F. (2014). On-line versus off-line NIRS analysis of intact olives. LWT-Food Science and Technology, 56(2), 363-369. https://doi.org/10.1016/j.lwt.2013.11.032
  45. Savitzky, A., Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8), 1627-1639. https://doi.org/10.1021/ac60214a047
  46. Schmutzler, M., Huck, C. W. (2016). Simultaneous detection of total antioxidant capacity and total soluble solids content by Fourier transform near-infrared (FT-NIR) spectroscopy: a quick and sensitive method for on-site analyses of apples. Food Control, 66, 27-37. https://doi.org/10.1016/j.foodcont.2016.01.026
  47. Schulz, H., Baranska, M., Quilitzsch, R., Schutze, W., Losing, G. (2005). Characterization of peppercorn, pepper oil, and pepper oleoresin by vibrational spectroscopy methods. Journal of Agricultural and Food Chemistry, 53(9), 3358-3363. https://doi.org/10.1021/jf048137m
  48. Schulz, H., Drews, H.-H., Quilitzsch, R., Kruger, H. (1998). Application of near infrared spectroscopy for the quantification of quality parameters in selected vegetables and essential oil plants. Journal of Near Infrared Spectroscopy, 6(201), A125-A130. https://doi.org/10.1255/jnirs.179
  49. Shiroma, C., Rodriguez-Saona, L. (2009). Application of NIR and MIR spectroscopy in quality control of potato chips. Journal of Food Composition and Analysis, 22(6), 596-605. https://doi.org/10.1016/j.jfca.2008.09.003
  50. Sirisomboon, P., Tanaka, M., Fujita, S., Kojima, T. (2007). Evaluation of pectin constituents of Japanese pear by near infrared spectroscopy. Journal of food engineering, 78(2), 701-707. https://doi.org/10.1016/j.jfoodeng.2005.11.009
  51. Valderrama, P., Braga, J. W. B., Poppi, R. J. (2007). Variable selection, outlier detection, and figures of merit estimation in a partial least-squares regression multivariate calibration model. A case study for the determination of quality parameters in the alcohol industry by near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 55(21), 8331-8338. https://doi.org/10.1021/jf071538s
  52. Vilar, W. T. S., Barbosa, M. F., Pinto, L., de Araujo, M. C. U., Pontes, M. J. C. (2020). Determination of N, N-diethyl-3-methylbenzamide and ethyl-butyl-acetylaminopropionate in insect repellent using near infrared spectroscopy and multivariate calibration. Microchemical Journal, 152, 104285. https://doi.org/10.1016/j.microc.2019.104285
  53. Wang, X., Huang, J., Fan, W., Lu, H. (2015). Identification of green tea varieties and fast quantification of total polyphenols by near-infrared spectroscopy and ultraviolet-visible spectroscopy with chemometric algorithms. Analytical Methods, 7(2), 787-792. https://doi.org/10.1039/C4AY02106A
  54. Wu, W., Walczak, B., Massart, D., Prebble, K., Last, I. (1995). Spectral transformation and wavelength selection in near-infrared spectra classification. Analytica chimica acta, 315(3), 243-255. https://doi.org/10.1016/0003-2670(95)00347-3
  55. Zhou, L., Wu, H., Li, J., Wang, Z., Zhang, L. (2012). Determination of fatty acids in broiler breast meat by near-infrared reflectance spectroscopy. Meat Science, 90(3), 658-664. https://doi.org/10.1016/j.meatsci.2011.10.010