• Title/Summary/Keyword: Spats

Search Result 48, Processing Time 0.023 seconds

Optimum Culture Condition on Four Species of Microalgae used as Live Food for Seedling Production of Bivalve (이매패류 먹이생물로 이용되는 미세조류 4종의 적정 배양환경조건)

  • Min, Byeong-Hee;Hur, Sung Bum
    • The Korean Journal of Malacology
    • /
    • v.31 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • In order to investigate the live food value of microalgae for efficacious rearing of larvae and spats of bivalve, we studied growth rates of four microalgal species (Isochrysis galbana, Pavlova lutheri, Chaetoceros simplex, Tetraselmis tetrathele) cultured in different environmental conditions. These include changes in temperatures (20, 25, 30 and $35^{\circ}C$), salinities (20, 25, 30 and 33 psu) and light intensities (60, 100 and $140{\mu}mol\;m^{-2}s^{-1}$). The growth rate of I. galbana was faster at $25^{\circ}C$ than that of $20^{\circ}C$. At $25^{\circ}C$ the highest growth rate of I. galbana was observed at 33 psu (0.413) and the lowest at 20 psu (0.368) in 10 days of culture (P < 0.05). The growth rate of I. galbana was lower at 25 psu (0.383) than that of 30 psu and higher than that of 20 psu (P < 0.05). Similar temperature and salinity-dependent changes were also found in P. lutheri and T. tetrathele. C. simplex showed faster growth rate at $30^{\circ}C$ than that of $25^{\circ}C$. The highest growth rate of C. simplex was observed at 33 psu (0.428) and the lowest at 20 psu (0.389) in 10 days of culture (P < 0.05). Upon exposure to the light with different intensities, all four microalgal species showed a significantly faster growth rate at $140{\mu}mol\;m^{-2}s^{-1}$ than at $100{\mu}mol\;m^{-2}s^{-1}$ (P < 0.05).

Recovery Rate and Histological Changes in the Gills of Juvenile Abalone Haliotis discus hannai by Exposure Time of Different Water Temperatures and Salinities (수온 및 염분별 노출시간에 따른 북방전복, Haliotis discus hannai 치패의 회복률 및 아가미의 조직학적 변화)

  • Park, Mi Seon;Kim, Seong-Hee;Lim, Han Kyu;Min, Byung Hwa;Chang, Young Jin;Jeong, Min Hwan
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.225-232
    • /
    • 2013
  • This study looked into recovery rate and histological changes in the gills of juvenile abalone Haliotis discus hannai by exposure time (3, 6, 12, 24 and 48 h) of different water temperatures (15, 20 and $25^{\circ}C$) and salinities (30, 25, 20 and 15 psu) to understand reasons for the death of abalone exposed by low salinity water. In each water temperature, abalone spats that were exposed to low salinity water (less than 20 psu) for over 6 hours showed decrease in survival rate during recovery and those were exposed at the salinity of 15 psu for more than 24 hours all died. Histological observation showed expansion or damage of gills of the species which were exposed at less than 20 psu for over 6 hours. In case of abalones exposed at the salinity of 15 psu for over 24 hours, most gill tissues were destroyed. This result was glaringly obvious at a higher water temperature, lower salinity and longer exposure time. Accordingly, suffocation caused by damage of gills considered one of direct causes of the death.

Habitat Environments and Spatiotemporal Distribution of Clithon retropictum at the Estuaries of Bonggang and Miryoung Streams in the Southern Coast of Korea (남해안 봉강천과 미룡천 하구에서 기수갈고둥의 분포 및 서식지 환경 특성)

  • Jang, Keon Gang;Kim, Min-Seop;Jo, Soo-Gun;Yih, Wonho;Kim, Hyung Seop
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.127-140
    • /
    • 2021
  • At the estuaries of Bonggang and Miryong streams in the Korean southern coast, the spatiotemporal distribution and habitat environment of a nerite snail, Clithon retropictum (Gastropoda: Neritidae), which has been assigned as a legally protected species of Korea, were explored. Physicochemical environmental factors such as water temperature, salinity, tidal level distribution as well as biotic environments (chlorophyll-a concentration and epilithic microalgae composition) were monitored every month. The relationships between the environmental factors and spatiotemporal distribution of the nerite snail population were analyzed. Water temperature, salinity, and water level varied by season and lunar tidal rhythm. The spatiotemporal distribution of the nerite snail was mostly related to water salinity. Among epilithic algae which were the priority prey of snails, blue-green algae and green algae dominated in summer and autumn, while diatoms predominated during winter and spring. Chlorophyll-a concentration was highly and positively correlated with the population density of the nerite snail. The correlation coefficients were different depending on the taxon (Family) of epilithic algae. The mean population density was 302.2 inds m-2 and 271.8 inds m-2 in Bonggang Stream and Miryong Stream, respectively. The egg capsules of the nerite snail in the two habitats were observed from March (in Bonggang Stream) or April (in Miryong Stream) to August, and newly hatched juveniles recruited in the habitats from August were assessed with regard to frequency distributions of shell width. The occurrence of large-sized snails in upper stream reaches of both Bonggang and Miryong indicated the movement of spats from the mouth to the upper reaches during the whole life cycle.

Importance of the Mixotrophic Ciliate Myrionecta rubra in Marine Ecosystems (해양 생태계 내에서 혼합영양 섬모류 Myrionecta rubra의 중요성)

  • Myung, Geum-Og;Kim, Hyung-Seop;Jang, Keon-Gang;Park, Jong-Woo;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.178-185
    • /
    • 2007
  • Myrionecta rubra Jankowski 1976(=Mesodinium rubrum Lohmann 1908), a mixotrophic ciliate, is very common and often causes recurrent red tides in diverse marine environments. Since the report on the first laboratory strain of this species in 2000, papers on its novel ecological role and evolutionary importance have been high lighted. This review paper is prepared to promote the de novo recognition M. rubra as a marine mixotrophic species. M. rubra is a ciliate which is able to photosynthesize using plastids originated from cryptophyte (including Teleaulax sp. and Geminigera sp.) prey cells (i.e. kleptoplastidic ciliate). Recently, novel bacterivory of M. rubra was firstly reported. Thus, the nutritional modes of M. rubra include photosynthesis, bacterivory, and algivory. In turn, M. rubra was reported as the prey species of metazoan predators such as calanoid copepods, mysids, larvae of ctenophore and anchovy, and spats of bivalves. In addition, it was reported that dinoflagellate Dinophysis causing diarrhetic shellfish poisoning is one among the predators of M. rubra. Thus, M. rubra, a marine mixotrophic ciliate, may play a pivotal role as a common linking ciliate for the flow of energy and organic material in pelagic food webs.

Comparison of Growth of the Pacific Oysters, Crassostrea gigas, Cultured with Korean and Japanese Spats (한국산 및 일본산 굴, Crassostrea gigas 종패의 성장비교)

  • 정우건;조상만;문수경;정보영
    • The Korean Journal of Malacology
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • To study the growth of transplanted Pacific oysters, Crassostrea gigas, we sampled Korean and Japanese oysters attached in Chinhae Bay near Gaduk Island and in Seto inland sea in Japan, respectively, suspended in Pukman Bay. Water Temperature ranged from 11.2 to 27.8$^{\circ}C$ (mean 19.84 ${\pm}$ 5.47$^{\circ}C$) on the surface, and 11.1 to 23.6$^{\circ}C$ (mean 18.31 ${\pm}$ 4.18$^{\circ}C$) on the bottom. Salinity ranged from 31.45 to 34.57 (mean 33.10 ${\pm}$ 1.16) on the surface, and from 31.69 to 34.35 (mean 33.24 ${\pm}$ 1.06) on the bottom. salinity was the lowest in September and October, and the highest in December. Growth of oysters in shell height showed a significant difference after being suspended at the farm, reaching 70.3 ${\pm}$ 12.5 mm in the Korean oysters and 96.2 ${\pm}$ 14.6 mm in the Japanese oysters in December. While the Korean oysters showed relatively low growth rate and cessation of growth after sudden growth between June and July, the Japanese oysters showed continuous growth during the whole farming period, although stepwise growth was observed. It was not until September that meat weight showed a significant difference between the two. After September, there was a sudden increase in the Japanese oysters, reaching 7.5 ${\pm}$ 2.9 g in December, but growth of the Korean oysters showed slow growth rate during whole farming period, reaching 4.6 ${\pm}$ 1.9 g in December. here was an obvious decrease in the meat weight of Japanese oysters in December, which might be attributed to restriction of food. Condition factors rebounded in October in the Korean oysters and in September in the Japanese oysters, respectively, attaining 12.8 in the Korean oysters and 15.3 in the Japanese oysters at the end of investigation on December. Shell length-height regression equations were as follows: Korean oysters: S$\sub$h/=2.922S$\sub$t/,-4.8024 (r$^2$= 0.8541) Japanese oysters: S$\sub$t/=3.623S$\sub$h/,-5.1239 (r$^2$=0.7782) This showed the possibility of morphological transformation in the shell of the Korean oysters since shell height was longer than those reported by Bae et al. (1976) and Lee et al. (1992).

  • PDF

Spat Collection of the Ark shell, Scapharca in the West Coast of Korea (큰이랑피조개, Scapharca satowi의 자연채묘)

  • 송홍인;박광재;조영록;박영제
    • Journal of Aquaculture
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • During the periods from lily to October, 2000 in Hongseong and lucy to October, 2001 in Taean in the west coast of Korea, the following environmental conditions prevailed : water temperature : 22.0~26.817, salinity 27.23 ~30.80%, dissolved oxygen 4.12 ~6.26 ml/l, pH 7.89 ~8.09, phosphate 0.39 ~0.65 $\mu m$ , inorganic nitrogen 5.05~9.26 $\mu m$, suspended solid 5.4~20.8 mg/l and chemical oxygen demand 1.12~1.87 mg/l. The B-shaped veliger larvae of the Ark shell occurred in maximum number at $25^{\circ}C$ prevailing from mid-August at Hongseong and Taean. Full grown larvae reached maximum abundance from late August. To identify the effectiveness of the substratum for spat collection, raschel net were tested to Larval settlement. The most effective depth to collect the larvae in natural environment was the collectors suspended at 7~8 m depth. At these depths, about 49 to 94 spats were found on the collector (40$\times$50 cm), The growth of shell height (Y) to shell length (X), and total weight (W) to shell length (L) could be formulated as follows respectively: Hongseong: SH = 0.7168 SL -0.6466 ( $r^2$ = 0.9839), TW = $0.0001SL^{3.1705}$ ($r^2$ = 0.9882) Taean: SH = 0.736 SL -0.8824 ($r^2$ : 0.9899), TW : 0.00005 $SL^{3.3731}$ ($r^2$ : 0.9899)

Studies on Boring Characteristics and Mortality on the Valves of the Seed and Adult Meretrix petechialis by Glossaulax didyma didyma (Gastropoda: Naticidae) in the Shellfish Aquafarm and the Indoor Aquarium (패류양식장과 실내 사육수조에서 큰구슬우렁이 Glossaulax didyma didyma (Gastropoda: Naticidae)에 의한 말백합 종패와 성패의 패각 위 천공특징 및 폐사에 관한 연구)

  • Park, Young-Je;Kim, Sung-Han
    • The Korean Journal of Malacology
    • /
    • v.27 no.2
    • /
    • pp.131-141
    • /
    • 2011
  • Boring caracteristics, boring rate, and predation, rates on the valves of the seed and adult clams of Meretrix petechialis by Glossaulax didyma didyma in the shellfish aquafarm and the indoor rearing aquarium were investigated by various morphometric data. The investigations were carried out from June to September, 2007. The morphology of drilled holes on the valves of M. petechialis showed the crater type as seen in the spats of Ruditapes philippinarum and M. lusoria. The sizes of the outer diameters of holes were greater than the inner diameters of the holes on the valves of M. petechialis in the shellfish aquafarm and the indoor aquarium at the laboratory. On the whole, the sizes of the holes on the valves of the seeds of M. petechialis was smaller than those bored holes on the adult valves. The location of the bored holes on the valves of the seeds varied widely with the the sizes of the individuals of M. petichialis, while most of holes on the valves of adult clams were located near the umbo position of the valves of the clams in the shellfish aquafarm and the indoor aquarium at the laboratory. On the whole, the outer and inner diameters of the bored holes increased with increase of shell lengths of the clams in the shellfish aquafarm and the indoor rearing aquarium at the laboratory. The authors could confirm experimentally the boring snail, G. didyma didyma, drilled the seeds and adult clams of M. petechialis. In the experiments for 15 days (three times repeated) in the indoor rearing aquarium at the laboratory, the mortality of dead shells to total shells of M. petechialis by boring snail Glossaulax didyma didyma was totally average 41.5%, and percent of drilled shells to total dead shells of clams by the boring snail was average 47.1%. Of total shells, percent of drilled shells to total shells of clams by the boring snail was totally average 19.3%. Predation of G. didyma didyma were greater at night than the day time. Average 0.5 seed and adult individuals of M. petewchialis were consumed per G. didyma didyma, per day. Predation varied with shell lengths of M. petechialis and shell widths of G. didyma didyma.

A Study on the Optimum Stocking Density of the Juvenile Abalone, Hailotis discus hannai Net Cage Culture or Indoor Tank Culture (해상가두리 및 실내 육상수조에서 북방전복, Haliotis discus hannai 치패의 적정 수용밀도에 관한 연구)

  • Kim, Byeong-Hak;Park, Min-Woo;Son, Maeng-Hyun;Kim, Tae-Ik;Cho, Jae-Kwon;Myeong, Jeong-In
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2013
  • Experiments for net cage culture at sea were conducted in each $2.4{\times}2.4$ m in area and took the samples from four different densities: 150, 300, 450 and 600 per cross-sectional area ($m^2$) of shelter. The same stocking densities applied to indoor tank culture to investigate the growth and survival rate. The size of juvenile abalone sample was $36.14{\pm}2.28$ mm for net cage culture and $38.62{\pm}3.22$ mm or indoor tank. Feed such as raw brown sea mustard, raw kelp and dried kelp was sufficiently provided to the abalone. In net cage culture experiment, the growth of the spat of juvenile abalone was the fastest $60.53{\pm}5.75$ mm in the 150 abalone cage per square meter ($m^2$), followed by the 300 abalone cage at $54.01{\pm}5.17$ mm, 450 abalone cage at $51.48{\pm}5.37$ mm and 600 abalone cage at $51.09{\pm}4.96$ mm in order. In the meantime, in the indoor tank experiment, the 150 abalone indoor tank was the fastest $47.50{\pm}6.31$ mm per square meter, followed by the 300 abalone tank at $45.92{\pm}5.23$ mm, the 450 abalone tank at $44.24{\pm}5.59$ mm and the 600 abalone tank at $43.62{\pm}4.44$ mm in order. The survival rate was more than 97.9% in all the experiments, not showing a significant difference.