DOI QR코드

DOI QR Code

Recovery Rate and Histological Changes in the Gills of Juvenile Abalone Haliotis discus hannai by Exposure Time of Different Water Temperatures and Salinities

수온 및 염분별 노출시간에 따른 북방전복, Haliotis discus hannai 치패의 회복률 및 아가미의 조직학적 변화

  • Park, Mi Seon (Aquaculture Management Division, National Fisheries Research & Development Institute) ;
  • Kim, Seong-Hee (Planning Department, Ministry of Oceans & Fisheries) ;
  • Lim, Han Kyu (Development of Marine and Fisheries Resources, Mokpo National University) ;
  • Min, Byung Hwa (Aquaculture Management Division, National Fisheries Research & Development Institute) ;
  • Chang, Young Jin (Development of Marine Bio-Materials and Aquaculture, Pukyong National University) ;
  • Jeong, Min Hwan (Aquaculture Management Division, National Fisheries Research & Development Institute)
  • 박미선 (국립수산과학원 양식관리과) ;
  • 김성희 (해양수산부 기획조정실) ;
  • 임한규 (목포대학교 해양수산자원학과) ;
  • 민병화 (국립수산과학원 양식관리과) ;
  • 장영진 (부경대학교 해양바이오신소재학과) ;
  • 정민환 (국립수산과학원 양식관리과)
  • Received : 2013.09.13
  • Accepted : 2013.09.26
  • Published : 2013.09.30

Abstract

This study looked into recovery rate and histological changes in the gills of juvenile abalone Haliotis discus hannai by exposure time (3, 6, 12, 24 and 48 h) of different water temperatures (15, 20 and $25^{\circ}C$) and salinities (30, 25, 20 and 15 psu) to understand reasons for the death of abalone exposed by low salinity water. In each water temperature, abalone spats that were exposed to low salinity water (less than 20 psu) for over 6 hours showed decrease in survival rate during recovery and those were exposed at the salinity of 15 psu for more than 24 hours all died. Histological observation showed expansion or damage of gills of the species which were exposed at less than 20 psu for over 6 hours. In case of abalones exposed at the salinity of 15 psu for over 24 hours, most gill tissues were destroyed. This result was glaringly obvious at a higher water temperature, lower salinity and longer exposure time. Accordingly, suffocation caused by damage of gills considered one of direct causes of the death.

본 연구는 저염분 해수에 노출된 전복의 폐사 원인을 구명하고자, 수온별 (15, 20 및 $25^{\circ}C$) 염분별 (30, 25, 20 및 15 psu) 노출시간별 (3, 6, 12, 24 및 48 h) 북방전복, Haliotis discus hannai 치패의 회복률 및 아가미의 조직학적 변화를 조사하였다. 모든 수온조건에서 20 psu 이하의 저염분 해수에 6시간 이상 노출시킨 전복은 회복기간 동안 생존율이 감소하였으며, 15 psu 해수에 24시간 이상 노출시킨 전복은 회복되지 못하고 전량 폐사하였다. 이를 조직학적으로 관찰한 결과, 20 psu 이하의 저염분 해수에 6시간 이상 노출시킨 전복의 아가미 조직은 팽창 또는 손상되었으며, 15 psu 해수에 24시간 이상 노출시킨 전복의 아가미 조직은 대부분 파괴되었다. 이와같은 결과는 수온이 높을수록, 염분이 낮을수록, 노출시간이 길수록 확연히 나타났다. 따라서 저염분 해수에 노출된 전복이 폐사하는 직접적인 원인 중의 하나는 아가미 조직의 손상으로 인한 질식으로 판단된다.

Keywords

References

  1. Chance, B., Sice, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59: 427-605.
  2. Chen, J.C. and Chen, W.C. (2000) Salinity tolerance of Haliotis diversicolor supertexta at different salinity and temperature levels. Aquaculture, 181: 191-203. https://doi.org/10.1016/S0044-8486(99)00226-4
  3. Ferraris, M., Radice, S., Catalani, P., Francolini, M., Marabini, L. and Chiesara, E. (2002) Early oxidative damage in primary cultured trout hepatocytes: a time course study. Aquatic. Toxicology., 59: 283-296. https://doi.org/10.1016/S0166-445X(02)00007-3
  4. Gauthier-Clerc, S., Pellerin, J., Blaise, C. and Gagne, F.. (2002) Delayed gametogenesis of Mya arenaria in the Saguenay fjord (Canada): a consequence of endocrine disruptors. Comp. Biochem. Physiol., 131C: 457-467.
  5. Hinch, S.G. and Stephenson, L.A. (1987) Size-and age-specific patterns of trace metal concentrations on fresh water clams from on acid-sensitive and a circumneutral lake. Can. J. Zool., 65: 2436-2442. https://doi.org/10.1139/z87-368
  6. Holliday, J.E., Allan, G.L. and Nell, J.A. (1993) Effects of stocking density for nursery culture of Sydney rock oysters (Saccostrea commercialis). Aquaculture, 96: 7-16.
  7. Jwa, M.S., Kang, K.P., Choe, M.K. and Yeo, I.K. (2009) Effects of low salinity stresses on the physiology of disc abalone, Haliotis discus discus. J. Fish. Pathol., 22: 293-303.
  8. Kimbrough, K.L., Johnson, W.E., Lauenstein, G.G., Christensen, J.D. and Apeti, D.A. (2008) An assessment of two decades of contaminant monitoring in the Nation's Coastal Zone. Silver spring MD. pp. 1-105. NOAA technical memorandum NOS NCCOS, 74.
  9. Kinne, O. (1966) Physiological aspects of animal life in estuaries with special reference to salinity. Neth. J. Sea. Res., 3: 222-244. https://doi.org/10.1016/0077-7579(66)90013-5
  10. Lee, J.A. (2003) The energy budgets in various environments and environmental tolerance of ezo abalone Haliotis discus hannai. Ph. D. Thesis, Pukyong Nat Univ, Busan, Korea, pp. 145.
  11. Newell, R.C. and Kofoed, L.H. (1977) Adjustment of the components of energy balance in the gastropod Crepidula fornicata in response to thermal acclimation. Mar. Biol., 44: 275-286. https://doi.org/10.1007/BF00387708
  12. NSTF (1990) North sea task force monitoring master plan. North sea environment report No 3. North sea task force/oslo and paris comrnissions/ICES, London.
  13. Parihar, M.S., Dubey, A.K., Javeri, T. and Prakash, P. (1996) Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipids content in liver of freshwater catfish Hateropneustes fossilis exposed to elevated temperature. J. Therm. Biol., 21: 223-330.
  14. Park, J.J, Lee, J.S. and Lee, J.S. (2011) Fine structure and histopathological changes exposed to acute high salinity of the gill of Japanese clam, Corbicula japonica. Korean J. Malacol., 27: 15-27. https://doi.org/10.9710/kjm.2011.27.1.015
  15. Pierce, S.K. and Greenberg, M.J. (1972) The nature of cellular volume regulation in marine bivalves. J. Exp. Bio., 25: 15-19.
  16. Quinn, B., Gagne, F., Costello, M., McKenzie, C., Wilson, J. and Mothersill, C. (2004). The endocrine disrupting effect of municipal effluent on the zebra mussel (Dreissena polymorpha). Aquat. Toxicol., 66: 279-292. https://doi.org/10.1016/j.aquatox.2003.10.007
  17. Rasmussen, L.P.D., Hage, E. and Karlog, O. (1983) Light and electron microscopic studies of the acute and chronic toxic effects of N-nitorose compounds on the marine mussel, Mytilus edulis (L). II. N-methyl-N-nitro-N-nitrodoguanidine. Aquat. Toxicol., 3: 301-311. https://doi.org/10.1016/0166-445X(83)90012-7
  18. Regoli, F. and Orlando, E. (1994) Accumulation and subcelluar distribution of metals (Cu, Fe, Mn, Pb and Zn) in the mediterranean mussels Mytilus galloprovincialis during a field transplant experiment. Mar. Pollut. Bull., 28: 592-600. https://doi.org/10.1016/0025-326X(94)90360-3
  19. Rittschof, D. and McClellan-Green, P. (2005) Molluscs as multidisciplinary models in environment toxicology. Mar. Pollut. Bull., 50: 369-373. https://doi.org/10.1016/j.marpolbul.2005.02.008
  20. Shin, Y.K., Moon, T.S. and Wi, C.H. (2002) Effects of the dissolved oxygen concentration on the physiology of the manila clam, Tegillarca granosa (Linnaeus). J. Korean. Soc., 35: 485-489.
  21. Sunila, I. and Lindstrom, R. (1985) Survival, growth and shell deformities of copper-and cadmium-exposed mussels (Mytilus edulis L.) in brackish water. Estuar. Coast. Shelf. Sci., 21: 555-565. https://doi.org/10.1016/0272-7714(85)90056-3
  22. Tucker, L.E. (1970) Effects of external salinity on Scutus breviculus (Gastropoda, Prosobranchia) -I. Body weight and blood composition. Comp. Biochem. Physiol., 36: 301-319. https://doi.org/10.1016/0010-406X(70)90011-3
  23. Wendel, A. and Feuerstein, S. (1981) Grug-induced lipid peroxidation in mice-1. Modulation by monoxygenase activity, glutathione and selenium status. Biochem. Pharmacol., 30: 2513-2520. https://doi.org/10.1016/0006-2952(81)90576-1
  24. Zaccaron da Silver, A., Zanette, J., Fereira, J.F., Guzenski, J., Marques, M.R. and Bainy, A.C. (2005) Effects of salinity on biomarker responses in Crassostrea rhizophorae (Mollusca, Bivalvia) Exposed to diesel oil. Ecotoxicol. Environ. Saf., 62: 376-382. https://doi.org/10.1016/j.ecoenv.2004.12.008