• Title/Summary/Keyword: Spatial Sound

Search Result 261, Processing Time 0.022 seconds

Hardware Design of Enhanced Real-Time Sound Direction Estimation System (향상된 실시간 음원방향 인지 시스템의 하드웨어 설계)

  • Kim, Tae-Wan;Kim, Dong-Hoon;Chung, Yun-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.115-122
    • /
    • 2011
  • In this paper, we present a method to estimate an accurate real-time sound source direction based on time delay of arrival by using generalized cross correlation with four cross-type microphones. In general, existing systems have two disadvantages such as system embedding limitation due to the necessity of data acquisition for signal processing from microphone input, and real-time processing difficulty because of the increased number of channels for sound direction estimation using DSP processors. To cope with these disadvantages, the system considered in this paper proposes hardware design for enhanced real-time processing using microphone array signal processing. An accurate direction estimation and its design time reduction is achieved by means of an efficient hardware design using spatial segmentation methods and verification techniques. Finally we develop a system which can be used for embedded systems using a sound codec and an FPGA chip. According to experimental results, the system gives much faster real-time processing time compared with either PC-based systems or the case with DSP processors.

A Quality Identification System for Molding Parts Using HTM-Based Sound Recognition (HTM 기반의 소리 연식을 이용한 부품의 양.불량 판별 시스템)

  • Bae, Sun-Gap;Han, Chang-Young;Seo, Dae-Ho;Kim, Sung-Jin;Bae, Jong-Min;Kang, Hyun-Syug
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1494-1505
    • /
    • 2010
  • A variety of sounds take place in medium and small-sized manufactories producing many kinds of parts in a small quantity with one press. We developed the identification system for the quality of parts using HTM(Hierarchical Temporal Memory)-based sound recognition. HTM is the theory that the operation principle of human brain's neocortex is applied to computer, suggested by Jeff Hopkins. This theory memorizes temporal and spatial patterns hierarchically about the real world, which is known for its cognitive power superior to the previous recognition technologies in many cases. By applying the HTM model to the sound recognition, we developed the identification system for the quality of molding parts. In order to verify its performance we recorded the various sounds at the moment of producing parts in the real factory, constructed the HTM network of sound, and then identified the quality of parts by repeating learning and training. It reveals that this system gets an excellent and accurate results at the noisy factory.

Analysis of Physical Characteristics of Sound Environment and the Subjective Reactions in Hanok Complexes (한옥주거단지 소리환경의 물리적 특성과 주관반응의 관계 분석)

  • Shin, Yong-Gyu;Park, Hyeon-Ku;Kook, Chan;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.154-161
    • /
    • 2014
  • Demands for Korean Traditional Residence Complexes as a more humane resident space have recently been increasing for the purposes of users' health and convenience, built with the purpose of reflecting various trends. This study is aimed at examining the physical characteristics of design in residence complexes by analyzing the physical characteristics of the sound environment as auditory elements of Hanok Complexes and the relationship between spatial and visual test values. The results were shown as follows: In subjective evaluation at Hanok, Natural sounds were recognized higher but artificial sounds were lower. According to the interrelationship analysis between subjective evaluation and physical measurement values, entrance (regular-StdDev), yard (regular-NbEm, friendly-G), waterside (regular-articulation index(rooms), StdDev, $L_{min}$, Rem), etc had been shown highly related.

Acoustic holography for an engine radiation noise using equivalent sources (등가음원을 이용한 엔진 방사 소음의 음향 홀로그래피에 대한 연구)

  • Jeon, In-Youl;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1101-1106
    • /
    • 2004
  • This study presents the reconstruction of sound field radiated from an automotive engine using equivalent sources. Basic concept of the method presented is to replace the engine noise source with elementary sources of multipoles, e.g., monopoles and dipoles. The so-called Helmholtz equation least-squares (HELS) method can reconstruct the sound radiation fields from spherical geometries in a series expansion of spherical Hankel functions and spherical harmonics. In this paper, multi-Point, multipole equivalent sources are employed to reconstruct the sound field radiated from an automotive engine with a fixed rotation speed. To ensure and improve the accuracy of reconstruction, the spatial filters of multipole coefficients and wave-vectors are adopted for suppressing the adverse effect of high-order multipoles. Optimal filter shapes are designed with regularization parameters minimizing the generalized cross validation (GCV) function between actual and reproduced model. After regeneration of field pressures using the proposed method as many as necessary, the vibro-acoustic field of an engine could be reconstructed by using the BEM-based near-field acoustic holography (NAH) technique in a cost-effective manner.

  • PDF

Noise Visualization of Moving Vehicles Using Microphone Line Array (선형 마이크로폰 어레이를 이용한 이동 차량의 음장 가시화)

  • 김시문;권휴상;박순홍;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.291-297
    • /
    • 1996
  • To visualize sound field or to identify noise sources, we can use many methods such as intensity method, acoustic holographic method, source identification method using line array, etc. Conventionally all these methods are performed with the assumption of stationary condition in space and time. But for moving source, spatial characteristics and frequency components are changing, so we need another processing algorithm. This paper shows some experimental results - sound field by moving noise sources. In the experiment cross type microphone line array is used for sensing pressure and cars and a motorcycle are used as moving sources that are assumed to have constant speed. The processing methods are acoustic holographic method, spherical beamforming and spectrogram.

  • PDF

Constraints satisfaction problem기법을 이용한 조종패널 설계방법

  • 박성준;조항준;정의승;장수영
    • Proceedings of the ESK Conference
    • /
    • 1994.04a
    • /
    • pp.75-84
    • /
    • 1994
  • A control panel layout method based on the constraint satisfaction problem(CSP) technique was developed to generate an ergonomically sound panel design. This control panel layout method attempts to incorporate a variety of relevant ergonomic principles and design constrains, and generate an optimal or, at least, a "satisfactory" solution through the efficient search algorithm. The problem of seeking an ergonomically sound panel design should be viewed as a multiple criteria problem, and most of the design objectives should be understood as constraints. Hence, a CSP technique was employed in this study for dealing with the multi-constraiants layout problem. The efficient search algorithm using "preprocess" and "look ahead" procedures was developed to handle the vast amount of computational effort. In order to apply the CSP technique to the panel layout procedure, the ergonomic principles such as spatial compatibility, frequency-of- use, importance, functional grouping, and sequence-of-use were formalized as CSP terms. The effectiveness of the developed panel layout method was evaluated by example problems, and the results clearly showed that the generated layouts took various ergonomic design principles into account.esign principles into account.

  • PDF

A Study on Setting the Minimum and Maximum Distances for Distance Attenuation in MPEG-I Immersive Audio

  • Lee, Yong Ju;Yoo Jae-hyoun;Jang, Daeyoung;Kang, Kyeongok;Lee, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.27 no.7
    • /
    • pp.974-984
    • /
    • 2022
  • In this paper, we introduce the minimum and maximum distance setting methods used in geometric distance attenuation processing, which is one of spatial sound reproduction methods. In general, sound attenuation by distance is inversely proportional to distance, that is 1/r law, but when the relative distance between the user and the audio object is very short or long, exceptional processing might be performed by setting the minimum distance or the maximum distance. While MPEG-I Immersive Audio's RM0 uses fixed values for the minimum and maximum distances, this study proposes effective methods for setting the distances considering the signal gain of an audio object. Proposed methods were verified through simulation of the proposed methods and experiments using RM0 renderer.

Ambisonic Rendering for Diffuse Sound Field Simulations based on Geometrical Acoustics (기하음향 기반 확산 음장 시뮬레이션을 위한 앰비소닉 렌더링 기법)

  • Pilsun Eu;Franz Zotter;Jae-hyoun Yoo;Jung-Woo Choi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.26-29
    • /
    • 2022
  • The diffuse sound field plays a crucial role in the perceptual quality of the auralization of virtual scenes. Diffuse Rain is a geometrical scattering model which enables the simulation of diffuse fields that is compatible with acoustic ray tracing, but is often computationally expensive. We develop a novel method that can reduce this cost by rendering the large number of Diffuse Rain data in Ambisonics format. The proposed method is evaluated in a shoebox scene simulation run on MATLAB, in reference to a more faithful method of rendering the Diffuse Rain data ray-by-ray. The EDC and IACC of the binaural output show that the simulated diffuse field can be rendered in Ambisonics with only minimal deviations in energy decay and spatial quality, even with 1st-order Ambisonics.

  • PDF

Spatial Distributions of Chromium, Copper, and Arsenic Concentrations in Soils Near Three Log Structures and a Sound Barrier, All Constructed with CCA-treated Wood (CCA 처리 목재로 지은 세 개의 통나무 구조물과 방음벽 주변 토양에서 크롬, 구리 및 비소의 공간적 분포)

  • Kim, He-Kap;Song, Byeong-Yeol;Koo, Jin-Hoi
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.12-20
    • /
    • 2008
  • This study was conducted to investigate the spatial distributions of chromated copper arsenate (CCA) metals in soils around three log structures and a sound barrier, all built with CCA-treated wood. Sixty-six surface and 35 profile soil samples were collected around the wood structures in addition to 13 background soil samples. The concentrations of chromium, copper, and arsenic in the soil samples collected in the vicinity of the structures were higher than those in the background samples, except in the case of one structure. The concentrations in the surface soils adjacent to the 3-year-old structures seemed to be higher than those in the soils adjacent to the 8-year-old ones. Although the lateral distributions of the metals varied with the structures, chromium and arsenic appeared to show concentration gradients within 20-60 cm and 40-100 cm, respectively. Copper seemed to be the least mobile, displaying concentration gradients only within 20 cm. Even though there were no explicit vertical concentration gradients for any of the metals according to the profile soil sample analysis, chromium and copper seemed to show concentration gradients only up to 5 and 10 cm, respectively, whereas arsenic showed gradients up to 35 cm. At study sites, it was evident that heavy metals leached into soil from CCA-treated wood were confined to neighboring areas both laterally and vertically, and that any plausible ecological impact may occur only within a small range.

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.