• Title/Summary/Keyword: Spatial Information Control System

Search Result 343, Processing Time 0.034 seconds

A Study on the Web Mapping Method and Application of the Topographic Information in an Open Environment (개방환경에서 지형정보의 웹지도화 방법과 적용에 관한 연구)

  • Kim, Nam-Shin
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.5
    • /
    • pp.563-575
    • /
    • 2007
  • This study aims to investigate a possibility of using topographic information by web mapping in open environments. Web mapping intends to focus on a map analysis and application of the function and geo-visualization. Functions of Web topographic info-map include a spatial analysis, enlargement and minimization, movement, landuse information, user-controling 3 dimension map, landform cross-section analysis, shortest path analysis. The web system adopts SVG(scalable vector graphics), MYSQL, PHP, XML for mapping. SVG has open source policy, so everyone can use it, as well, it is effective on flexible database linkage, cartographic representation. 3D map is intended to represent 3D map by user-controlled sunshine putting pixel opacity by elevation values after making DEM. Landform is designed to show a cross-section analysis and statistics by retrieving height information from database engine with clicking two points on the map. Shortest path analysis within regions uses Dijkstra's algorithm. Near future, resultantly, the area of WebGIS will have to meet more social demands for use-created geo-information and application, so more researches are needed to be web mapping more applicable for users.

  • PDF

Spatial Variability Analysis of Rice Yield and Grain Moisture Contents (벼 수확량 및 곡물 수분함량의 공간변이 해석)

  • Chung, Ji-Hoon;Lee, Ho-Jin;Lee, Seung-Hun;Yi, Chang-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.203-209
    • /
    • 2009
  • Yield monitoring is one of a precision agriculture technology that is used most widely. It is spatial variability analysis of yield information that should be attained with yield monitoring system development. This experiment was conducted to evaluate spatial variability of yield and grain moisture content in rice paddy field, and their relationships to rice productivity. It is necessary to minimize sampling interval for accurate yield map making or to control cutting width of rice combine. Considering small rice plots such as $0.2{\sim}0.4$ ha, optimum size of sampling plot was below 15 m more than 5 m in with and length. In variable rate treatment field, average yield was similar, but yield variation was reduced than conventional field. Gap of yield by another plot in same field was bigger than half of average yield than yield variation was significantly big. Therefore yield measuring flow sensor must be able to measure at least 300 kg/10a more than 1000 kg/10a. Variation of moisture content in same field was not big and spatial dependance did not appear greatly. But, variation between different field is appeared difference according to weather circumstance before harvesting. Change of spatial dependence of yield was not big, because of field variation of moisture content is not big.

Development of a Laser-Generated Ultrasonic Inspection System by Using Adaptive Error Correction and Dynamic Stabilizer (적응적 에러 보정과 다이나믹 안정기를 이용한 레이저 유도 초음파 검사 시스템 개발)

  • Park, Seung-Kyu;Baik, Sung-Hoon;Park, Moon-Cheol;Lim, Chang-Hwan;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.391-399
    • /
    • 2005
  • Laser-generated ultrasonic inspection system is a non-contact scanning inspection device with high spatial resolution and wide bandwidth. The amplitude of laser-generated ultrasound is varied according to the energy of pulse laser and the surface conditions of an object where the CW measuring laser beam is pointing. In this paper, we correct the generating errors by measuring the energy of pulse laser beam and correct the measuring errors by extracting the gain information of laser interferometer at each time. h dynamic stabilizer is developed to stably scan on the surface of an object for an laser-generated ultrasonic inspection system. The developed system generates ultrasound after adaptively finding the maximum gain time of an laser interferometer and processes the signal in real time after digitization with high speed. In this paper, we describe hardware configuration and control algorithm to build a stable laser-generated ultrasonic inspection system. Also, we confirmed through experiments that the proposed correction method for the generating errors and measuring errors is effective to improve the performance of a system.

Comparative Study of the System for Decentralized Rainwater Management in Korea and Germany (한국과 독일의 분산식 빗물관리를 위한 제도 비교 연구)

  • Han, Young-Hae;Lee, Tae-Goo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.84-95
    • /
    • 2006
  • This study begins by examining the reason for the lack of urban planning that takes the water cycle into consideration. While there are institutions that support environmentally friendly development or smooth water circulation, these designs are not reflected in planning nor in the real world. After reviewing foreign case studies, policy suggestions and possible policy implications for Korea are derived. In Korea, there is not a sufficient level of relevant laws or institutions systematically established to make it possible to deal with rainwater in a decentralized way. Instead, facility standards or guidelines are considered separately for the control of water and for preventing natural disasters. And even though an environmentally friendly approach is stipulated in relevant laws in terms of spatial planning, there are no planning systems or implementation tools to actualize this kind of approach. The factors that make decentralized rainwater management possible in urban planning are analyzed based on the case study of Germany. Germany requires developers to plan in order to achieve ecological urban development. In addition, as a detailed implementation tool to promote conservation of the water cycle, the law provides for various kinds of measures such as restrictions on the proportion of impervious surface area according to the use of the land, required compensation measures for environmental degradation following development, introduction of a fee for rainwater runoff and the establishment of ecological landscape planning. The actual reason these measures can be implemented however is the provision of planning guidelines and design criteria for rainwater utilization, absorption and containment, and the construction of a database for various environmental information.

Analysis of National Control Points in Jeju Area (제주지역의 국가 기준점 정확도 분석)

  • Jung young-dong;Yang young-bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.273-282
    • /
    • 2005
  • A rapidly developed satellite technology is used in comprehensive fields such as spatial data aquisition and applications. Especially a GPS positioning is expected to reinvigorate at the national reference system changes to ITRF (International Terrain Reference Frame). Currently the National Geographic Information Institute (NGII) issues a triangulation point coordinate by separating old and new coordinates and in the year of 2007 it will be scheduled to be changed ITRF. The triangulation point coordinate in Cheju area causes some problems due to the difference original observation and re-observation. Thus in this study a GPS observation is conducted after re-organizing geodetic network based on 1st and 2nd order triangulation in order to check the current triangulation points in Cheju area. After the GPS observation data analysis, stable points were extracted, proposed a geodetic network and its application.

Topographic Mapping using SAR Interferometry Method (레이다 간섭기법(SAR Interferometry)을 이용한 지형도 제작)

  • Jeong, Do-Chan;Kim, Byung-Guk
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.67-76
    • /
    • 2000
  • Recently, SAR Interferometry method is actively being studied as a new technic in topographic mapping using satellite imageries. it extract height values using two SAR imageries covering same areas. Unlike when using SPOT imageries, it isn't affected by atmospheric conditions and time. But it is difficult to process radar imageries and the height accuracy is very low where relief displacements are high. In this study, we produced DEM(Digital Elevation Model) using ERS-1, ERS-2 tandem data and analysed the height accuracy over 14 ground control points. The mean error in height was 14.06m. But when using airborne SAR data, it Is expected that we can produce more accurate DEM which will be able to ue used in updating 1/10,000 or 1/25,000 map.

  • PDF

A Sequential AT Algorithm based on Combined Adjustment (결합 조정에 기반한 연속 항공삼각측량 알고리즘)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.669-678
    • /
    • 2009
  • Real-time image georeferencing technologies are required to generate spatial information promptly from the image sequences acquired by a multi-sensor system. We thus derive a sequential adjustment algorithm based on the combined adjustment model. By adopting the sequential adjustment model, we develop a sequential AT(Aerial Triangulation) algorithm to georeference image sequences in real-time. The proposed algorithm enables to perform AT rapidly with the minimum computation at the current stage by using the results computed at the previous stage whenever a new image is added. Experiments with simulated data were conducted to verify the effectiveness of the proposed algorithm. The results of the experiments show that the georeferencing of each image took very short time and its accuracy was determined within ${\pm}4cm$ on the ground control points comparing to the results of the existing simultaneous AT.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

Analysis of Georeferencing Accuracy in 3D Building Modeling Using CAD Plans (CAD 도면을 활용한 3차원 건축물 모델링의 Georeferencing 정확도 분석)

  • Kim, Ji-Seon;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.117-131
    • /
    • 2007
  • Representation of building internal space is an active research area as the need for more geometrically accurate and visually realistic increases. 3 dimensional representation is common ground of research for disciplines such as computer graphics, architectural design and engineering and Geographic Information System (GIS). In many cases CAD plans are the starting point of reconstruction of 3D building models. The main objectives of building reconstruction in GIS applications are visualization and spatial analysis. Hence, CAD plans need to be preprocessed and edited to adapt to the data models of GIS SW and then georeferenced to enable spatial analysis. This study automated the preprocessing of CAD data using AutoCAD VBA (Visual Basic Application), and the processed data was topologically restructured for further analysis in GIS environment. Accuracy of georeferencing CAD data was also examined by comparing the results of coordinate transformation by using digital maps and GPS measurements as the sources of ground control points. The reconstructed buildings were then applied to visualization and network modeling.

A Space-Time Cluster of Foot-and-Mouth Disease Outbreaks in South Korea, 2010~2011 (구제역의 시.공간 군집 분석 - 2010~2011 한국에서 발생한 구제역을 사례로 -)

  • Pak, Son Il;Bae, Sun Hak
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.4
    • /
    • pp.464-472
    • /
    • 2012
  • To assess the space-time clustering of FMD(Foot-and-Mouth Disease) epidemic occurred in Korea between November 2010 to April 2011, geographical information system (GIS)-based spatial analysis technique was used. Farm address and geographic data obtained from a commercial portal site were integrated into GIS software, which we used to map out the color-shading geographic features of the outbreaks through a process called thematic mapping, and to produce a visual representation of the relationship between epidemic course and time throughout the country. FMD cases reported in northern area of Gyounggi province were clustered in space and time within small geographic areas due to the environmental characteristics which livestock population density is high enough to ease transmit FMD virus to the neighboring farm, whereas FMD cases were clustered in space but not in time for southern and eastern area of Gyounggi province. When analyzing the data for 7-day interval, the mean radius of the spatial-time clustering was 25km with minimum 5.4km and maximum 74km. In addition, the radius of clustering was relatively small in the early stage of FMD epidemic, but the size was geographically expanded over the epidemic course. Prior to implementing control measures during the outbreak period, assessment of geographic units potentially affected and identification of risky areas which are subsequently be targeted for specific intervention measures is recommended.

  • PDF