• Title/Summary/Keyword: Sources of stress

Search Result 349, Processing Time 0.027 seconds

Ecological Management of Turf Insects and Zoysia Large Patch by Mixing Turfgrass Species (잔디 혼식을 통한 생태학적 병충해 관리)

  • 박봉주
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Ecological control can contribute to the sustainibility of vegetation management systems by reducing the input currently derived from non-renewable fossil energy sources. The use of turfgrass mixtures is an important tool in turf management. Turfgrass mixtures of two or more compatible and adapted species provide improved tolerance to pest and environmental stress, more so than monostands. The objectives of this study were to evaluated turf insects, pests and zoysia large patch control by turgrass mixtures. In April 2001 and 2002, plots were inoculated with 50g of Rhizoctonia solani AG2-2LP inoculum. Inoculum were treated within a 29cm diamater circle at Zoysia japonica, Zoysia japonica, Poa pratenis, or Festuca arundinacea mixtures. After four weeks, disease severity in each plot was determined. plot area visual ratings were assessed visually on a linera 0 to 100%. In August 2001 and October 2002, turf insects and pests in each plot were investigated in 10cm deep soil cores with 8cm diameters using hole cut. Zoysia large patch affected zoysiagrass monostands more severly than zoysiagrass and cool-season turfgrasses mixtures. It was suggested that the barrier effect of cool-season turfgrass suppressed zoysia large patch in the mixture of zoysiagrass and cool-season turfgrasses. Also, warm-season and cool-season turfgrasses mixtures suppressed insect populations more efficiently than warm-season turfgrass monostands.

Review, Assessment, and Learning Lesson on How to Design a Spectroelectrochemical Experiment for the Molten Salt System

  • Killinger, Dimitris;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.209-229
    • /
    • 2022
  • This work provided a review of three techniques-(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical-for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system's capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600℃. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.

Nitrogenase Derepression and Associated Metabolism in a Microaerophilic Cyanobacterium, Plectonema boryanum

  • Pandey, Kapil Deo;Sukla, Sarkar;Naz, Shaheen;Smita, Chaturvedi;Ajaikumar, Kashyap
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.179-185
    • /
    • 2001
  • Nitrate grown cells of cyanobacterium Plectonema boryanum, transferred to nitrogen stress, evolved nitrogenase catalyzed $H_2$ under microaerophilic condition. Nitrogen ($N_2$) in gs phase, low light intensity, and reducing substances in incubation phase stimulated $N_2$fixation ($H_2\;evolution$). Cyanobacterium grew slowly under microaerobic condition with a low intracellular ammonia pool. Nitrogen sources (${NO_3}^-,{NH_4}^+,\;and\;CH_3NH_3$) inhibited nitrogenase and glutamine synthetase (GS) transferase activity, and methylamine behaved like an ammonical nitrogen source. Depletion of molybdenum (Mo) and addition of tungsten (W) in the incubation medium inhibited $H_2$ evolution, Cyanobacterium was able to take up nitrate and expressed nitrate reductase (NR) activity under microaerophilic condition at an extremely slow rate.

  • PDF

The Effects of Purple Grape Juice Supplementation on Blood Pressure, Plasma Lipid Profile and Free Radical Levels in Korean Smokers (포도주스의 보충섭취가 흡연성인의 혈압, 혈장지질 및 자유 라디칼 생성에 미치는 영향)

  • 김정신;김혜영;박유경;박은주;강명희
    • Journal of Nutrition and Health
    • /
    • v.37 no.6
    • /
    • pp.455-463
    • /
    • 2004
  • Flavonoids contained in grapes are potent antioxidants that may protect against oxidative stress and reduce the risk of chronic diseases related with free radical damage. In this study we investigated the effect of daily grape juice supplementation on blood pressure (BP), plasma lipid profiles and the generation of free radicals in 67 healthy volunteers (29 smoker, 38 nonsmokers). The daily 480 ml of grape juice supplementation for 8 weeks resulted in a significant decrease in diastolic BP by 6.5% in smokers and systolic and diastolic BP by 11.2 and 3.7% in non-smokers. Plasma total cholesterol, HDL- and LDL-cholesterollevels in smokers and total cholesterol in non-smokers were significantly increased after the intervention. Plasma triglycerides and conjugated dienes were not affected by grape juice supplementation. Levels of free radical determined by reading the lucigenin-perborate ROS generating sources, decreased significantly by 18% compared to the beginning of the study. The results indicated that the consumption of grape juice may reduce BP and free radical generation in smokers, which was possibly exerted by flavonoids. Our findings suggested that the grape juice has protective effect on chronic disease due to the overproduction of free radical in smokers.

Single Phase Five Level Inverter For Off-Grid Applications Constructed with Multilevel Step-Up DC-DC Converter (멀티레벨 승압 DC-DC 컨버터와 구성된 독립형 부하를 위한 단상 5레벨 인버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.319-328
    • /
    • 2020
  • The recent use of distributed power generation systems constructed with DC-DC converters has become extremely popular owing to the rising need for environment friendly energy generation power systems. In this study, a new single-phase five-level inverter for off-grid applications constructed with a multilevel DC-DC step-up converter is proposed to boost a low-level DC voltage (36 V-64 V) to a high-level DC bus (380 V) and invert and connect them with a single-phase 230 V rms AC load. Compared with other traditional multilevel inverters, the proposed five-level inverter has a reduced number of switching devices, can generate high-quality power with lower THD values, and has balanced voltage stress for DC capacitors. Moreover, the proposed topology does not require multiple DC sources. Finally, the performance of the proposed topology is presented through the simulation and experimental results of a 400 W hardware prototype.

Physicochemical and Toxicological Properties of Effluent Organic Matters from Sewage and Industrial Treatment Plants (하폐수처리장 유래 방류수유기물질의 물리화학적 및 독성학적 특성)

  • Yoo, Jisu;Lee, Bomi;Hur, Jin;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • Unlike to natural organic matters (NOMs), effluent organic matters (EfOMs) are not well understood due to their complexity and heterogeneity. In this study, EfOMs from sewage and industrial wastewater treatment effluents and Suwannee River NOM (SRNOM) were isolated into hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions. Specific ultraviolet absorbance (SUVA) and fluorescence excitation emission matrix (FEEM) analyses were used to characterize physicochemical properties. In addition, acute toxicity and oxidative stress to Daphnia magna were evaluated to characterize toxicological properties. EfOMs showed similar properties to microbially derived organic matters having low hydrophobicity, which are totally different from SRNOM having high hydrophobicity. Moreover, acute toxicity and antioxidant enzyme activity in D. magna was largely dependent on fraction types of EfOMs. These findings suggest that EfOMs have different physicochemical and toxicological properties compared with those of NOMs, which needs to be further identified with various sources of EfOMs.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

Characteristics of Noise in the Nurse Station of Comprehensive Care Wards (간호·간병통합서비스병동 간호스테이션의 소음 특성 분석)

  • Bang, Sujeong;Oh, Younghun;Lee, Hyunjin
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 2018
  • Purpose: It is recently reported that the increasing noise in the hospitals has caused psychological and physiological stress problems with patients, and medical staffs. This study intends to investigate and analyze the noise levels in the sub stations in comparison with those in the wards in general. This study tries also to find some alterative solutions to the immediate problems. Methods: Noise measurements are conducted in advance prior to analyzing their results at two general hospitals with more than 900 beds, in the comprehensive nursing service wards and in the main/ sub stations located in the general wards Results: Although the noise level in the comprehensive nursing service wards has been slightly lower than that in the general wards, this result is over the recommended noise levels. Therefore it is recommended that efforts should be made to low down the noise level as an alternative and to replace the aged carts as well. Implications: The comprehensive nursing service wards are required to take measures against the various noise sources.

Analysis for DME FPSO Storage Tank and Experimental Study on the DME Evaporation Rate by Rolling Motion of Ship (DME FPSO선박의 탱크해석 및 Rolling 유동에 따른 증발 실험연구)

  • Yun, Sangkook;Cho, Wonjun;Baek, Youngsoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1010-1015
    • /
    • 2012
  • DME(Dimethyl ether) is the one of the massive energy sources synthesized from natural gas. KOGAS has already developed the commercial-scale production plant of DME and has been doing to obtain overseas resources to meet the domestic needs. This paper presents the DME storage tank design criteria by stress and strain analysis, and the experimental study on the evaporation phenomena of DME by thermal intake and physical rolling movement of DME FPSO or cargo vessel, because the various moving motions along with heat intake cause the evaporation of low temperature liquid. The experimental result shows that the evaporation rate was increased with larger rolling degree and higher liquid level. The rolling motion leads to evaporate about 20% increase with 15 degree rolling based on the evaporation quantity without rolling.