DOI QR코드

DOI QR Code

Physicochemical and Toxicological Properties of Effluent Organic Matters from Sewage and Industrial Treatment Plants

하폐수처리장 유래 방류수유기물질의 물리화학적 및 독성학적 특성

  • Yoo, Jisu (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Lee, Bomi (Department of Environment and Energy, Sejong University) ;
  • Hur, Jin (Department of Environment and Energy, Sejong University) ;
  • Jung, Jinho (Division of Environmental Science & Ecological Engineering, Korea University)
  • 유지수 (고려대학교 환경생태공학부) ;
  • 이보미 (세종대학교 환경에너지융합학과) ;
  • 허진 (세종대학교 환경에너지융합학과) ;
  • 정진호 (고려대학교 환경생태공학부)
  • Received : 2013.10.21
  • Accepted : 2014.01.29
  • Published : 2014.01.30

Abstract

Unlike to natural organic matters (NOMs), effluent organic matters (EfOMs) are not well understood due to their complexity and heterogeneity. In this study, EfOMs from sewage and industrial wastewater treatment effluents and Suwannee River NOM (SRNOM) were isolated into hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions. Specific ultraviolet absorbance (SUVA) and fluorescence excitation emission matrix (FEEM) analyses were used to characterize physicochemical properties. In addition, acute toxicity and oxidative stress to Daphnia magna were evaluated to characterize toxicological properties. EfOMs showed similar properties to microbially derived organic matters having low hydrophobicity, which are totally different from SRNOM having high hydrophobicity. Moreover, acute toxicity and antioxidant enzyme activity in D. magna was largely dependent on fraction types of EfOMs. These findings suggest that EfOMs have different physicochemical and toxicological properties compared with those of NOMs, which needs to be further identified with various sources of EfOMs.

Keywords

References

  1. Aiken, G. R., McKnight, D. M., Thorn, K. A., and Thurman, E. M. (1992). Isolation of Hydrophilic Organic-Acids from Water Using Nonionic Macroporous Resins, Organic Geochemistry, 18(4), pp. 567-573. https://doi.org/10.1016/0146-6380(92)90119-I
  2. Al-Reasi, H. A., Wood, C. M., and Smith, D. S. (2013). Characterization of Freshwater Natural Dissolved Organic Matter (DOM): Mechanistic Explanations for Protective Effects against Metal Toxicity and Direct Effects on Organisms, Environment International, 59, pp. 201-207. https://doi.org/10.1016/j.envint.2013.06.005
  3. Baker, A. (2001). Fluorescence Excitation-Emission Matrix Characterization of Some Sewage-Impacted Rivers, Environmental Science and Technology, 35(5), pp. 948-953. https://doi.org/10.1021/es000177t
  4. Baker, A. and Spencer, R. G. (2004). Characterization of Dissolved Organic Matter from Source to Sea Using Fluorescence and Absorbance Spectroscopy, Science of the Total Environment, 333(1-3), pp. 217-232. https://doi.org/10.1016/j.scitotenv.2004.04.013
  5. Barata, C., Varo, I., Navarro, J. C., Arun. S., and Porte, C. (2005). Changes in Antioxidant Enzyme Activities and Lipid Peroxidation in the Freshwater Cladoceran Daphnia magna Exposed to Redox Cycling Compounds, Comparative Biochemistry and Physiology - Part C: Toxicology and Pharmacology, 140(2), pp. 175-186. https://doi.org/10.1016/j.cca.2005.01.013
  6. Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K. (2003). Fluorescence Excitation - Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter, Environmental Science and Technology, 37(24), pp. 5701-5710. https://doi.org/10.1021/es034354c
  7. Chen, A., Hu, C., Conmy, R. N., Muller-Karger, F., and Swarzenxki, P. (2007). Colored Dissolved Organic Matter in Tampa Bay, Florida, Marine Chemistry, 104(1-2), pp. 98-109. https://doi.org/10.1016/j.marchem.2006.12.007
  8. Chen, B., Nam, S., Westerhoff, P. K., Krasner, S. W., and Amy, G., (2009). Fate of Effluent Organic Matter and DBP Precursors in an Effluent-Dominated River: A Case Study of Wastewater Impact on Downstream Water Quality, Water Research, 43(6), pp. 1755-1765. https://doi.org/10.1016/j.watres.2009.01.020
  9. Chin, Y. P., Aiken, G. R., and Danielsen, K. M. (1997). Binding of Pyrene to Aquatic and Commercial Humic Substances: The Role of Molecular Weight and Aromaticity, Environmental Science and Technology, 31(6), pp. 1630-1635. https://doi.org/10.1021/es960404k
  10. Coble, P. G. (1996). Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy, Marine Chemistry, 51(4), pp. 325-346. https://doi.org/10.1016/0304-4203(95)00062-3
  11. Coles, B. and Ketterer, B. (1990). The Role of Glutathione and Glutathione Transferases in Chemical Carcinogenesis, Critical Reviews in Biochemistry and Molecular Biology, 25(1), pp. 47-70. https://doi.org/10.3109/10409239009090605
  12. Croue, J. P., Benedetti, M. F., Violleau, D., and Leenheer, J. A. (2003). Characterization and Copper Binding of Humic and Nonhumic Organic Matter Isolated from the South Platte River: Evidence for the Presence of Nitrogenous Binding Site, Environmental Science and Technology, 37(2), pp. 328-336. https://doi.org/10.1021/es020676p
  13. Dong, M. M. and Rosario-Ortiz, F. L. (2012). Photochemical Formation of Hydroxyl Radical from Effluent Organic Matter, Environmental Science and Technology, 46(7), pp. 3788-3794. https://doi.org/10.1021/es2043454
  14. Han, J. H., Yoon, T. I., Jo, K. C., and Song, J. Y. (2005). Study on Removal of DOC for Effluent from Nitrification and Denitrification Process with Zeolite by Combined Process of Coagulation and UF Membrane, Journal of the Korean Society of Water and Wastewater, 19(5), pp. 537-546. [Korean Literature]
  15. Hur, J. and Schlautman, M. A. (2003). Using Selected Operational Descriptors to Examine the Heterogeneity within a Bulk Humic Substance, Environmental Science and Technology, 37(5), pp. 880-887. https://doi.org/10.1021/es0260824
  16. Kalscheur, K. N., Penskar, R. R., Daley, A. D., Pechauer, S. M., Kelly, J. J., Peterson, C. G., and Gray, K. A. (2012). Effects of Anthropogenic Inputs on the Organic Quality of Urbanized Streams, Water Research, 46(7), pp. 2515-2524. https://doi.org/10.1016/j.watres.2012.01.043
  17. Kim, S. B., Kim, W. K., Chounlamany, V., Seo, J., Yoo. J., Jo, H. J., and Jung, J. (2012). Identification of Multi-Level Toxicity of Liquid Crystal Display Wastewater toward Daphnia magna and Moina nacrocopa, Journal of Hazardous Materials, 227-228, pp. 327-333. https://doi.org/10.1016/j.jhazmat.2012.05.059
  18. Leenheer, J. A. (1994). Chemistry of Dissolved Organic Matter in Rivers, Lakes, and Reservoirs, Environmental Chemistry of Lakes and Reservoirs, Chapter 7, pp. 195-221.
  19. Leenheer, J. A. and Croue, J. P. (2003). Characterizing Dissolved Organic Matter, Environmental Science and Technology, 37(1), 18A-26A. https://doi.org/10.1021/es032333c
  20. Liao, T., Jin, S. W., Yang, F. X., Hui, Y., Xu, Y. (2006). An Enzyme-Linked Immunosorbent Assay for Rare Minnow (Gobiocypris rarus) Vitellogenin and Comparison of Vitellogenin Responses in Rare Minnow and Zebrafish (Danio rerio), Science of the Total Environment, 364(1-3), pp. 284-294. https://doi.org/10.1016/j.scitotenv.2006.02.028
  21. Lee, D., Chon, K., Kim, S., Jung, S., Lee, K., Hwang, T., Lim, B. and Cho, J. (2011). A Study on Characteristics of Natural Organic Matter Using XAD and FTIR in Yeongsan River System, Korean Journal of Limnology, 44(4), pp. 358-363. [Korean Literature]
  22. Lee, J., Cho, J., Kim, S. H., and Kim, S. D. (2011). Influence of $17{\beta}$-Estradiol Binding by Dissolved Organic Matter Isolated from Wastewater Effluent on Estrogenic Activity, Ecotoxicology and Environmental Safety, 74(5), pp. 1280-1287. https://doi.org/10.1016/j.ecoenv.2011.02.010
  23. Ma, H., Allen, H. E., and Yin, Y. (2001). Characterization of Isolated Fractions of Dissolved Organic Matter from Natural Waters and a Wastewater Effluent, Water Research, 35(4), pp. 985-996. https://doi.org/10.1016/S0043-1354(00)00350-X
  24. Malcolm, R. L. and MacCarthy, P. (1992). Quantitative Evaluation of XAD-8 and XAD-4 Resins Used in Tandem for Removing Organic Solutes from Water, Environment International, 18, pp. 597-607. https://doi.org/10.1016/0160-4120(92)90027-2
  25. Marhaba, T. F., Van, D., and Lippincott, R. L. (2000a). Application of Fluorescence Technique for Rapid Identification of DOM Fractions in Source Waters, Journal of Environmental Engineering, 126(11), pp. 1039-1044. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:11(1039)
  26. Marhaba, T. F., Van, D., and Lippincott, R. L. (2000b). Rapid Identification of Dissolved Organic Matter Fractions in Water by Spectral Fluorescent Signatures, Water Research, 34(14), pp. 3543-3550. https://doi.org/10.1016/S0043-1354(00)00090-7
  27. MacKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T. (2001). Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Materials and Aromaticity, Limnology and Oceanography, 46(1), pp. 38-48. https://doi.org/10.4319/lo.2001.46.1.0038
  28. Muller, R., Tang, J. Y. M., Thier, R., and Mueller, J. F. (2007). Combining Passive Sampling and Toxicity Testing for Evaluation of Mixtures of Polar Organic Chemicals in Sewage Treatment Plant Effluent, Journal of Environmental Monitoring, 9(1), pp. 105-110. https://doi.org/10.1039/B612430E
  29. Narita, H., Abe, J., Takakuwa, T., and Kunimoto, M. (2007). Toxicity Assessment of Treated Wastewater Using Cultured Human Cell Lines, Environmental Monitoring and Assessment, 129(1-3), pp. 71-77. https://doi.org/10.1007/s10661-006-9428-x
  30. Organization for Economic Co-operation and Development (OECD). (2004). Guideline for the Testing of Chemicals: Daphnia sp. Acute Immobilisation Test, OECD 202, Organization for Economic Co-operation and Development, Paris.
  31. Quaranta, M. L., Mendes, M. D., and MacKay, A. A. (2012). Similarities in Effluent Organic Matter Characteristics from Connecticut Wastewater Treatment Plants, Water Research, 46(2), pp. 284-294. https://doi.org/10.1016/j.watres.2011.10.010
  32. Ruhle, F., Lanceleur, L., Schafer, J., Neumann, T., Fuchs, S., Blanc, G., and Norra, S. (2012). Behavior of Dissolved Trace Metals by Discharging Wastewater Effluents into Receiving Water, S. Rauch and G. M. Morrison (eds.), Urban Environment: Proceedings of the 10th Urban Environment Symposium, Alliance for Global Sustainability Bookseries 19, DOI 10.1007/978-94-007-2540-9_31.
  33. Senesi, N., Miano, T. M., Provenzano, M. R., and Brunetti, G. (1991). Characterization, Differentiation, and Classification of Humic Substances by Fluorescence Spectroscopy, Soil Science, 152(4), pp. 259-271. https://doi.org/10.1097/00010694-199110000-00004
  34. Seo, J., Kang, Y., Min, K., Lee, K., Seo, G., Kim, S., Paik, K., and Kim, S. (2010). Characteristics of Distribution and Decomposition of Organic Matters in Stream Water and Sewage Effluent, Analytical Science and Technology, 23(1), pp. 36-44. https://doi.org/10.5806/AST.2010.23.1.036
  35. Shon, H. K., Vigneswaran, S., and Snyder, S. A. (2006). Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment, Critical Reviews in Environmental Science and Technology, 36(4), pp. 327-374. https://doi.org/10.1080/10643380600580011
  36. Thurman, E. M. (1985). Organic Geochemistry of Natural Waters, Martinus Nijhoff/Dr W. junk Publishers, Dortrecht.
  37. Timofeyev, M. A., Shatilina, Z. M., Kolesnichenko, A. V., Bedulina, D. S., Kolesnichenko, V. V., Pflugmacher, S., and Steinberg C. E. W. (2006). Natural Organic Matter (NOM) Induces Oxidative Stress in Freshwater Amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton), Science of the Total Environment, 366(2-3), pp. 673-681. https://doi.org/10.1016/j.scitotenv.2006.02.003
  38. Westerhoff, P., Chen, W., and Esparza, M. (2001). Fluorescence Analysis of a Standard Fulvic Acid and Tertiary Treated Wastewater, Journal of Environmental quality, 30(6), pp. 2037-2046. https://doi.org/10.2134/jeq2001.2037
  39. Yamashita, Y. and Tanoue, E. (2003). Chemical Characterization of Protein-like Fluorophores in DOM in Relation to Aromatic Amino Acids, Marine Chemistry, 82(3), pp. 255-271. https://doi.org/10.1016/S0304-4203(03)00073-2
  40. Yoo, J., Ahn, B., Oh, J. J., Han, T., Kim, W. K., Kim, S., and Jung, J. (2013). Identification of Toxicity Variations in a Stream Affected by Industrial Effluents Using Daphnia magna and Ulva pertusa, Journal of Hazardous Materials, 260, pp. 1042-1049. https://doi.org/10.1016/j.jhazmat.2013.07.006
  41. Yu, J., Lv, L., Lan, P., Zhang. S., Pan. B., and Zhang. W., (2012). Effect of Effluent Organic Matter on the Adsorption of Perfluorinated Compounds onto Activated Carbon, Journal of Hazardous Materials, 225-226, pp. 99-106. https://doi.org/10.1016/j.jhazmat.2012.04.073

Cited by

  1. Role of polarity fractions of effluent organic matter in binding and toxicity of silver and copper vol.317, 2016, https://doi.org/10.1016/j.jhazmat.2016.06.009