• Title/Summary/Keyword: Source and drain electrode

Search Result 98, Processing Time 0.029 seconds

Electrical stabilities of half-Corbino thin-film transistors with different gate geometries

  • Jung, Hyun-Seung;Choi, Keun-Yeong;Lee, Ho-Jin
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.51-54
    • /
    • 2012
  • In this study, the bias-temperature stress and current-temperature stress induced by the electrical stabilities of half-Corbino hydrogenated-amorphous-silicon (a-Si:H) thin-film transistors (TFTs) with different gate electrode geometries fabricated on the same substrate were examined. The influence of the gate pattern on the threshold voltage shift of the half-Corbino a-Si:H TFTs is discussed in this paper. The results indicate that the half-Corbino a-Si:H TFT with a patterned gate electrode has enhanced power efficiency and improved aperture ratio when compared with the half-Corbino a-Si:H TFT with an unpatterned gate electrode and the same source/drain electrode geometry.

Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure (더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석)

  • Kim, Ji Won;Park, Kee Chan;Kim, Yong Sang;Jeon, Jae Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-285
    • /
    • 2020
  • Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.

Dependency of Oxygen Partial Pressure of ITO Films for Electrode of Oxide-based Thin-Film Transistor (산화물기반 박막트랜지스터 전극용 ITO박막의 제작시 투입 산소 분압 의존성)

  • Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.82-86
    • /
    • 2021
  • In this study, we investigated the oxygen partial pressure effect of ITO films for electrodes of oxide-based Thin-Film Transistor (TFT). Firstly, we deposited single ITO films on the glass substrate at room temperature. ITO films were prepared at the various partial pressures of oxygen gas 0-7.4% (O2/(Ar+O2)). As increasing oxygen on the process of film deposition, electrical properties were improved and optical transmittance increased in the visible light range (300-800 nm). For the electrode of TFT, we fabricated a TFT device (W/L=1000/200 ㎛) with ITO films as the source and drain electrode on the silicon wafer. Except for the TFT device combined with ITO film prepared at the oxygen partial pressure ratio of 7.4%, We confirmed that TFT devices with ITO films via FTS system operated as a driving device at threshold voltage (Vth) of 4V.

Novel Method to Form Metal Electrodes by Self-Alignment and Self-Registration Processes

  • Shin, Dong-Youn
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1197-1199
    • /
    • 2009
  • Self-alignment for the fabrication of printed thin film transistors has become of great interest because of the resolution and registration limits of printing technologies. In this work, self-patterning and selfregistration processes are introduced, which do not need surface energy patterning and the resulting minimum gate channel length could be down to $11.2{\mu}m$ with the sheet resistance of 2.6 ${\Omega}/{\square]$ for the source and drain electrodes.

  • PDF

Investigation on Contact Resistance of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors with Various Electrodes by Transmission Line Method

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.139-141
    • /
    • 2015
  • Contact resistance of interface between the channel layers and various S/D electrodes was investigated by transmission line method. Different electrodes such as Ti/Au, a-IZO, and multilayer of a-IGZO/Ag/a-IGZO were compared in terms of contact resistance, using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes showed good performance and low contact resistance due to the homo-junction with channel layer.

Fabrication of Flexible Inorganic/Organic Hybrid Thin-Film Transistors by All Ink-Jet Printed Components on Plastic Substrate

  • Kim, Dong-Jo;Lee, Seong-Hui;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1463-1465
    • /
    • 2008
  • We report all-ink-jet printed inorganic/organic hybrid TFTs on plastic substrates. We have investigated the optimal printing conditions to make uniform patterned layers of gate electrode, dielectrics, source/drain electrodes, and semiconductor as a coplanar type TFT in a successive manner. All ink-jet printed devices have good mechanical flexibility and current modulation characteristic even when bent.

  • PDF

The nonvolatile memory device of amorphous silicon transistor (비정질실리콘 박막트랜지스터 비휘발성 메모리소자)

  • Hur, Chang-Wu;Park, Choon-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1123-1127
    • /
    • 2009
  • This paper expands the scope of application of the thin film transistor (TFT) in which it is used as the switching element by making the amorphous silicon TFT with the non-volatile memory device,. It is the thing about the amorphous silicon non-volatile memory device which is suitable to an enlargement and in which this uses the additionally cheap substrate according to the amorphous silicon use. As to, the amorphous silicon TFT non-volatile memory device is comprised of the glass substrates and the gate, which evaporates on the glass substrates and in which it patterns the first insulation layer, in which it charges the gate the floating gate which evaporates on the first insulation layer and in which it patterns and the second insulation layer in which it charges the floating gate, and the active layer, in which it evaporates the amorphous silicon on the second insulation layer the source / drain layer which evaporates the n+ amorphous silicon on the active layer and in which it patterns and the source / drain layer electrode in which it evaporates on the source / drain layer.

Graphene for MOS Devices

  • Jo, Byeong-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.67.1-67.1
    • /
    • 2012
  • Graphene has attracted much attention for future nanoelectronics due to its superior electrical properties. Owing to its extremely high carrier mobility and controllable carrier density, graphene is a promising material for practical applications, particularly as a channel layer of high-speed FET. Furthermore, the planar form of graphene is compatible with the conventional top-down CMOS fabrication processes and large-scale synthesis by chemical vapor deposition (CVD) process is also feasible. Despite these promising characteristics of graphene, much work must still be done in order to successfully develop graphene FET. One of the key issues is the process technique for gate dielectric formation because the channel mobility of graphene FET is drastically affected by the gate dielectric interface quality. Formation of high quality gate dielectric on graphene is still a challenging. Dirac voltage, the charge neutral point of the device, also strongly depends on gate dielectrics. Another performance killer in graphene FET is source/drain contact resistance, as the contact resistant between metal and graphene S/D is usually one order of magnitude higher than that between metal and silicon S/D. In this presentation, the key issues on graphene-based FET, including organic-inorganic hybrid gate dielectric formation, controlling of Dirac voltage, reduction of source/drain contact resistance, device structure optimization, graphene gate electrode for improvement of gate dielectric reliability, and CVD graphene transfer process issues are addressed.

  • PDF

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Enhanced hole injection by oxygen plasma treatment on Au electrode for bottom-contact pentacene organic thin-film transistors

  • Kim, Woong-Kwon;Hong, Ki-Hyon;Kim, Soo-Young;Lee, Jong-Lam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.74-77
    • /
    • 2006
  • Thin $AuO_x$ layer was formed by $O_2$ plasma treatment on Au electrode. The surface work function of plasma treatment showed higher by 0.5 eV than that of bare Au, reducing the hole injection barrier at the Au/pentacene interface. Using $O_2$ plasma-treated Au source-drain electrodes, the field-effect mobility of bottom-contact pentacene-OTFT was increased from 0.05 to 0.1 $cm^2/Vs$.

  • PDF