DOI QR코드

DOI QR Code

Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure

더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석

  • Kim, Ji Won (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Park, Kee Chan (Department of Electronics Engineering, Konkuk University) ;
  • Kim, Yong Sang (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jeon, Jae Hong (School of Electronics and Information Engineering, Korea Aerospace University)
  • 김지원 (한국항공대학교 항공전자정보공학부) ;
  • 박기찬 (건국대학교 전자공학부) ;
  • 김용상 (성균관대학교 전자전기공학부) ;
  • 전재홍 (한국항공대학교 항공전자정보공학부)
  • Received : 2020.03.20
  • Accepted : 2020.04.13
  • Published : 2020.07.01

Abstract

Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.

Keywords

References

  1. E. Fortunato, Adv. Mater., 24, 2945 (2012). [DOI: https://doi.org/10.1002/adma.201103228]
  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]
  3. T. Kamiya, K. Nomura, and H. Hosono, J. Disp. Technol., 5, 273 (2009). [DOI: https://doi.org/10.1109/JDT.2009.2021582]
  4. S. Jeon, A . Benayad, S . E. A hn, S. P ark, I . Song , C. K im, and U. I. Chung, Appl. Phys. Lett., 99, 082104 (2011). [DOI: https://doi.org/10.1063/1.3623426]
  5. K. S. Son, J. S. Jung, K. H. Lee, T. S. Kim, J. S. Park, Y. H. Choi, K. C. Park, J. Y. Kwon, B. Koo, and S. Y. Lee, IEEE Electron Device Lett., 31, 219 (2010). [DOI: https://doi.org/10.1109/LED.2009.2038805]
  6. K. Abe, K. Takahashi, A. Sato, H. Kumomi, K. Nomura, T. Kamiya, J. Kanicki, and H. Hosono, IEEE Trans. Electron Devices, 59, 1928 (2011). [DOI: https://doi.org/10.1109/TED.2012.2195008]
  7. H. Lim, H. Yin, J. S. Park, I. Song, C. Kim, J. C. Park, S. Kim, S. W. Kim, C. B. Lee, Y. C. Kim, Y. S. Park, and D. Kang, Appl. Phys. Lett., 93, 063505 (2008). [DOI: https://doi.org/10.1063/1.2967456]
  8. K. S. Son, J. S. Jung, K. H. Lee, T. S. Kim, J. S. Park, K. C. Park, J. Y. Kwon, B. Koo, and S. Y. Lee, IEEE Electron Device Lett., 31, 812 (2010). [DOI: https://doi.org/10.1109/LED.2010.2050294]
  9. C. H. Wu, H. H. Hsieh, C. W. Chien, and C. C. Wu, J. Disp. Technol., 5, 515 (2009). [DOI: https://doi.org/10.1109/JDT.2009.2026189]
  10. G. Baek, K. Abe, A. Kuo, H. Kumomi, and J. Kanicki, IEEE Trans. Electron Devices, 58, 4344 (2011). [DOI: https://doi.org/10.1109/TED.2011.2168528]
  11. D. A. Neamen, Semiconductor Physics and Devices, 4th ed. (McGraw-Hill, 2012) p. 457.