• Title/Summary/Keyword: Song Mode

Search Result 1,049, Processing Time 0.03 seconds

Dual-mode Blind Equalization Algorithm for QAM Demodulation (QAM 복조용 이중 모드 채널 등화 알고리즘)

  • Ryu, Seok-Kyu;Hwang, Hu-Mor;Song, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3209-3211
    • /
    • 1999
  • We propose a robust Dual-Mode blind equalization algorithm based on Quadrant-partitioned Constant Modulus Algorithm (QCMA) and Modified Constant Modulus Algorithm(MCMA) for QAM demodulation and its performance evaluated. The proposed algorithm show that the stability in setting 2d range and the faster convergence accomplished to conventional Dual-Mode algorithm.

  • PDF

Sliding Mode Control of the ABS with a Disturbance Observer (관측기를 가진 ABS 슬라이딩 모드 제어법)

  • Hwang Jin-Kwon;Oh Kyeung-Heub;Song Chul-Ki
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.523-530
    • /
    • 2005
  • This paper addresses sliding mode control (SMC) of the anti-lock braking system (ABS) with a compensator of model uncertainties such as vehicle parameter variation, unmodeled dynamics, and external disturbances. A sliding mode controller (SMC) is designed with a nominal vehicle model to achieve a desired wheel slip ratio. A disturbance observer (DOB) is introduced to compensate the model uncertainties and is designed with a transfer function of a hydraulic brake dynamics. Through simulations on the model uncertainties, it is verified that the sliding mode control with the DOB can give the simulation results better than the sliding mode control without the DOB.

  • PDF

Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties (모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어)

  • Hwang Jin-Kwon;Song Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

A Reduced-Swing Voltage-Mode Driver for Low-Power Multi-Gb/s Transmitters

  • Song, Hee-Soo;Kim, Su-Hwan;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.104-109
    • /
    • 2009
  • At a lower supply voltage, voltage-mode drivers draw less current than current-mode drivers. In this paper, we newly propose a voltage-mode driver with an additional current path that reduces the output voltage swing without the need for complicated additional circuitry, compared to conventional voltage-mode drivers. The prototype driver is fabriccated in a 0.13-$^{\mu}m$ CMOS technology and used to transmit data streams at the rate of 2.5 Gb/s. Deemphasis is also implemented for the compensation of channel attenuation. With a 1.2-V supply, it dissipates 8.0 mA for a 400-mV output voltage swing.

Average Current Mode Control Technique Having Fast Response (빠른 응답 특성을 가지는 Average Current Mode Control 설계 기법 연구)

  • Park, Hae-Chan;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.231-239
    • /
    • 2017
  • A novel current control technique with fast response and application in an unbalanced system is proposed in this paper. Contrary to the conventional PI and dead-beat current control techniques, the proposed method is adopted to the valley current mode control (VCMC) and average current mode control (ACMC) methods to overcome the phase delay caused by conventional methods. The advantages of the proposed system are simplicity of structure and ease of implementation. The VCMC and ACMC methods are established and applied to the buck converter, boost converter, three-phase PWM converter, and three-phase inverter. The control performances of the proposed systems are shown by computer simulations and verified by experimental results.

Wide-Input Range Dual Mode PWM / Linear Buck Converter with High robustness ESD Protection Circuit

  • Song, Bo-Bae;Koo, Yong-Seo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.292-300
    • /
    • 2015
  • This paper proposes a high-efficiency, dual-mode PWM / linear buck converter with a wide-input range. The proposed converter was designed with a mode selector that can change the operation between PWM / linear mode by sensing a load current. The proposed converter operates in a linear mode during a light load and in PWM mode during a heavy load condition in order to ensure high efficiency. In addition, the mode selector uses a bit counter and a transmission gate designed to protect from a malfunction due to noise or a time-delay. Also, in conditions between $-40^{\circ}C$ and $140^{\circ}C$, the converter has variations in temperature of $0.5mV/^{\circ}C$ in the PWM mode and of $0.24mV/^{\circ}C$ in the linear mode. Also, to prevent malfunction and breakdown of the IC due to static electricity, the reliability of IC was improved by embedding a self-produced 8 kV-class(Chip level) ESD protection circuit of a P-substrate Triggered SCR type with high robustness characteristics.

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn;Kim, Ki-Soo;Song, Jung-Ho;Kwon, O-Kyun;Kim, Gyung-Ock
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.339-341
    • /
    • 2010
  • The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.

Sliding Mode Observer for Uncertain Systems with Mismatched Uncertainties: An LMI Approach (LMI를 이용한 불확실한 시스템의 슬라이딩 모드 관측기 설계)

  • Song, Min-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1757-1758
    • /
    • 2006
  • This paper considers a method to design sliding mode observers for a class of uncertain systems using Linear Matrix Inequalities(LMI). In an LMI-based sliding mode observer design method for a class of uncertain systems the switching surface is set to be the difference between the observer and system output. In terms of LMIs, a necessary and sufficient condition is derived for the existence of a sliding-mode observer guaranteeing a stable sliding motion on the switching surface. The gain matrices of the sliding-mode observer are characterized using the solution of the LMI existence condition. The results are illustrated by an example.

  • PDF

Performance Comparison Between Harmonically Mode-Locked Ring and Figure-of-Eight Type Fiber Lasers

  • Kim Kyong Hon;Lee Hak Kyu;Min-Yong Jeon;El-Hang Lee;Cheol Soon Song;Ki Un NamKoong
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.386-389
    • /
    • 1996
  • We report on comparative results obtained from harmonically mode-locked laser operations of ring-type and figure-of-eight(F8) type erbium-doped fiber lasers by using a directional-coupler type electro-optic modulator as an active mode-locker. The mode-locked and transform-limited pulses of 10.6 ps width were obtained at harmonics of the fundamental cavity frequency with the F8 type laser while mode-locked laser pulses greater than 15 ps were achieved with the ring type laser.

  • PDF