• Title/Summary/Keyword: Solvers

Search Result 219, Processing Time 0.022 seconds

An Object-Oriented Model Base Design Using an Object Modeling Techniques (객체모델링기법에 의한 객체지향 모델베이스 설계)

  • Jeong Dae-Yul
    • Management & Information Systems Review
    • /
    • v.1
    • /
    • pp.229-268
    • /
    • 1997
  • Recently, object-oriented concepts and technology are on the leading edge of programming language and database systems research, and their usefulness in those contexts has been successfully demonstrated. The adoption of object-oriented concept to the design of model bases has several benefits. From the perspectives of object-oriented approach, models in a model base are viewed as object which encapsulate their states and behaviors. This paper focuses on the design of an object-oriented model base that handles various resources of DSS(data, knowledge, models, solvers) in a unified fashion. For the design of a model base, we adopted Object Modeling Techniques(OMT). An object model of OMT can be used for the conceptual design of an overall model base schema. The object model of OMT provides several advantages over the conventional approaches in model base design. The main advantage are model reuse, hierarchical model construction, model sharing, meta-modeling, and unified model object management.

  • PDF

Transient Simulation of Graphene Sheets using a Deterministic Boltzmann Equation Solver

  • Hong, Sung-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.288-293
    • /
    • 2017
  • Transient simulation capability with an implicit time derivation method is a missing feature in deterministic Boltzmann equation solvers. The H-transformation, which is critical for the stable simulation of nanoscale devices, introduces difficulties for the transient simulation. In this work, the transient simulation of graphene sheets is reported. It is shown that simulation of homogeneous systems can be done without abandoning the H-transformation, as much as a specially designed discretization method is employed. The AC mobility and step response of the graphene sheet on the $SiO_2$ substrate are simulated.

Supersonic flow bifurcation in twin intake models

  • Kuzmin, Alexander;Babarykin, Konstantin
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.445-458
    • /
    • 2018
  • Turbulent airflow in channels of rectangular cross section with symmetric centerbodies is studied numerically. Shock wave configurations formed in the channel and in front of the entrance are examined. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations are obtained with finite-volume solvers of second-order accuracy. The solutions demonstrate an expulsion/swallowing of the shocks with variations of the free-stream Mach number or angle of attack. Effects of the centerbody length and thickness on the shock wave stability and flow bifurcation are examined. Bands of the Mach number and angle of attack, in which there exist non-unique flow fields, are identified.

A NUMERICAL ANALYSIS USING CIP METHOD (CIP 방법을 사용한 해석법)

  • Lee, J.H.;Hur, N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.211-217
    • /
    • 2009
  • The numerical program has been developed for the purpose of the complicate geometries application using CIP method. The non-staggered, non-orthogonal, and unstructured grid system can be also used for the various geometries in the program. For validating CIP solver, the lid-driven cavity flow and solitary wave propagation flow are carried out. Test results show a good agreement with the verified results. The dynamic solver was used for the behavior of moving body. Interface process between the two solvers is introduced. The research was performed on the flow problem around torpedo and log and the flow problem in a tank in order to analyze the three phase flow problem Although the comparison to the verified results was not quantitatively performed, the trend of the results was reasonable.

  • PDF

NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF

The Application of CFD for Ship Design (선박설계를 위한 계산유체역학의 활용)

  • Kim Wu-Joan;Van Suak-Ho
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.42-48
    • /
    • 2003
  • The issues associated with the application of CFD for ship design are addressed. Doubtlessly at the moment, CFD tools are very useful in evaluating hull forms prior to traditional towing tank tests. However, time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

A Study on 2-D Airfoil Design Optimization by Kriging (Kriging 방법을 이용한 2차원 날개 형상 최적설계에 대한 연구)

  • Ka Jae Do;Kwon Jang Hyuk
    • Journal of computational fluids engineering
    • /
    • v.9 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • Recently with growth in the capability of super computers and Parallel computers, shape design optimization is becoming easible for real problems. Also, Computational Fluid Dynamics(CFD) techniques have been improved for higher reliability and higher accuracy. In the shape design optimization, analysis solvers and optimization schemes are essential. In this work, the Roe's 2nd-order Upwind TVD scheme and DADI time march with multigrid were used for the flow solution with the Euler equation and FDM(Finite Differenciation Method), GA(Genetic Algorithm) and Kriging were used for the design optimization. Kriging were applied to 2-D airfoil design optimization and compared with FDM and GA's results. When Kriging is applied to the nonlinear problems, satisfactory results were obtained. From the result design optimization by Kriging method appeared as good as other methods.

Development of an object-oriented model management framework for computer executable algebraic modeling languages (최적화 모델링 언어를 위한 객체 지향 모형 관리 체계의 개발)

  • 허순영
    • Korean Management Science Review
    • /
    • v.11 no.2
    • /
    • pp.43-63
    • /
    • 1994
  • A new model management framework is proposed to accommodate wide-spreading algebraic modeling languages (AMLs), and to facilitate a full range of model manipulation functions. To incorporate different modeling conventions of the leading AMLs (AMPL, GAMS, and SML) homogeneously, generic model concepts are introduced as a conceptual basis and are embodied by the structural and operational constructs of an Object-Oriented Database Management System(ODBMS), enabling the framework to consolidate components of DSSs(database, modelbase, and associated solvers) in a single formalism effectively. Empowered by a database query language, the new model management framework can provide uniform model management commands to models represented in different AMLs, and effectively facilitate integration of the DSS components. A prototype system of the framework has been developed on a commercial ODBMS, ObjectStore, and a C++ programming language.

  • PDF

An Incompressible Flow Computation using a Multi-level Substructuring Method (다단계 부분 구조법에 의한 비 압축성 유동 계산)

  • Kim J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.83-90
    • /
    • 2004
  • Substructuring methods are usually used in finite element structural analyses. In this study a multi-level substructuring algorithm is developed and proposed as a possible candidate for incompressible fluid solves. Finite element formulation for incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et.al.[5]. The present algorithm consists of four stages such as a gathering stage, a condensing stage, a solving stage and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At highest level, each subdomain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each subdomain has been replaced by a sequential static condensation. The global algebraic system arising feom the assembly of each subdomains is solved using Conjugate Gradient Squared(CGS) method. In this case, pre-conditioning techniques usually accompanied by iterative solvers are not needed.

  • PDF

One-time Traversal Algorithm to Search Modules in a Fault Tree for the Risk Analysis of Safety-critical Systems (안전필수 계통의 리스크 평가를 위한 일회 순회 고장수목 모듈 검색 알고리즘)

  • Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.100-106
    • /
    • 2015
  • A module or independent subtree is a part of a fault tree whose child gates or basic events are not repeated in the remaining part of the fault tree. Modules are necessarily employed in order to reduce the computational costs of fault tree quantification. This quantification generates fault tree solutions such as minimal cut sets, minimal path sets, or binary decision diagrams (BDDs), and then, calculates top event probability and importance measures. This paper presents a new linear time algorithm to detect modules of large fault trees. It is shown through benchmark tests that the new method proposed in this study can very quickly detect the modules of a huge fault tree. It is recommended that this method be implemented into fault tree solvers for efficient probabilistic safety assessment (PSA) of nuclear power plants.