• Title/Summary/Keyword: Solution algorithm

Search Result 3,929, Processing Time 0.033 seconds

Sensor Node Deployment in Wireless Sensor Networks Based on Tabu Search Algorithm (타부 서치 알고리즘 기반의 무선 센서 네트워크에서 센서 노드 배치)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1084-1090
    • /
    • 2015
  • In this paper, we propose a Tabu search algorithm to efficiently deploy the sensor nodes for maximizing the network sensing coverage in wireless sensor networks. As the number of the sensor nodes in wireless sensor networks increases, the amount of calculation for searching the solution would be too much increased. To obtain the best solution within a reasonable execution time in a high-density network, we propose a Tabu search algorithm to maximize the network sensing coverage. In order to search effectively, we propose some efficient neighborhood generating operations of the Tabu search algorithm. We evaluate those performances through some experiments in terms of the maximum network sensing coverage and the execution time of the proposed algorithm. The comparison results show that the proposed algorithm outperforms other existing algorithms.

On the Comparison of Particle Swarm Optimization Algorithm Performance using Beta Probability Distribution (베타 확률분포를 이용한 입자 떼 최적화 알고리즘의 성능 비교)

  • Lee, ByungSeok;Lee, Joon Hwa;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.854-867
    • /
    • 2014
  • This paper deals with the performance comparison of a PSO algorithm inspired in the process of simulating the behavior pattern of the organisms. The PSO algorithm finds the optimal solution (fitness value) of the objective function based on a stochastic process. Generally, the stochastic process, a random function, is used with the expression related to the velocity included in the PSO algorithm. In this case, the random function of the normal distribution (Gaussian) or uniform distribution are mainly used as the random function in a PSO algorithm. However, in this paper, because the probability distribution which is various with 2 shape parameters can be expressed, the performance comparison of a PSO algorithm using the beta probability distribution function, that is a random function which has a high degree of freedom, is introduced. For performance comparison, 3 functions (Rastrigin, Rosenbrock, Schwefel) were selected among the benchmark Set. And the convergence property was compared and analyzed using PSO-FIW to find the optimal solution.

Numerical Experiment for the Properties of Nelder-Mead Simplex Algorithm Convergence (Nelder-Mead 심플렉스 알고리듬의 수렴에 관한 수치실험)

  • Hyun, Chang-Hun;Lee, Byeong-Ki
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.35-44
    • /
    • 2002
  • To find the optimal solution as rapidly and exactly as possible with Nelder-Mead simplex algorithm, the present values of the reflection, expansion, contraction and/or shrink parameters of this algorithm are needed to be changed at appropriate time during the search process. The reflection parameter is selected in this study in order to be changed because reflection, expansion and contraction process can be simultaneously effected by only this parameter. Two independent indices for determining whether the present value of the reflection parameter of this algorithm should be changed or not during the search process are suggested in this study. Those indices were made of the equations of Nelder-Mead simplex algorithm's convergence criterion and Dennis-Wood's convergence criterion, respectively. It is appeared that the optimal solution can be find with smaller numbers of objective function evaluation than the original Nelder-Mead's one with fixed parameter when the those indices are used during the search process. and the more remarkable reduction effect of the number of an objective function evaluation can be obtained when the latter index is used.

  • PDF

Comparison of Estimating Parameters by Univariate Search and Genetic Algorithm using Tank Model (단일변이 탐색법과 유전 알고리즘에 의한 탱크모형 매개변수 결정 비교 연구)

  • Lee, Sung-Yong;Kim, Tae-Gon;Lee, Je-Myung;Lee, Eun-Jung;Kang, Moon-Seong;Park, Seung-Woo;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The objectives of this study are to apply univariate search and genetic algorithm to tank model, and compare the two optimization methods. Hydrologic data of Baran watershed during 1996 and 1997 were used for correction the tank model, and the data of 1999 to 2000 were used for validation. RMSE and R2 were used for the tank model's optimization. Genetic algorithm showed better result than univariate search. Genetic algorithm converges to general optima, and more population of potential solution made better result. Univariate search was easy to apply and simple but had a problem of convergence to local optima, and the problem was not solved although search the solution more minutely. Therefore, this study recommend genetic algorithm to optimize tank model rather than univariate search.

Polynomial-time Greedy Algorithm for Anti-Air Missiles Assignment Problem (지대공 미사일 배정 문제의 다항시간 탐욕 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.185-191
    • /
    • 2019
  • During the modern battlefields of multi-batches flight formation attack situation, it is an essential task for a commander to make a proper fire distribution of air defense missile launch platforms for threat targets with effectively and quickly. Pan et al. try to solve this problem using genetic algorithm, but they are fails. This paper gets the initial feasible solution using high threat target first destroying strategy only use 75% available fire of each missile launch platform. Then, the assigned missile is moving to another target in the case of decreasing total threat. As a result of experiment, while the proposed algorithm is polynomial-time complexity greedy algorithm but this can be improve the solution than genetic algorithm.

Distributed Algorithm for Maximal Weighted Independent Set Problem in Wireless Network (무선통신망의 최대 가중치 독립집합 문제에 관한 분산형 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.73-78
    • /
    • 2019
  • This paper proposes polynomial-time rule for maximum weighted independent set(MWIS) problem that is well known NP-hard. The well known distributed algorithm selects the maximum weighted node as a element of independent set in a local. But the merged independent nodes with less weighted nodes have more weights than maximum weighted node are frequently occur. In this case, existing algorithm fails to get the optimal solution. To deal with these problems, this paper constructs maximum weighted independent set in local area. Application result of proposed algorithm to various networks, this algorithm can be get the optimal solution that fail to existing algorithm.

Intelligent Route Construction Algorithm for Solving Traveling Salesman Problem

  • Rahman, Md. Azizur;Islam, Ariful;Ali, Lasker Ershad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

Metaheuristic-designed systems for simultaneous simulation of thermal loads of building

  • Lin, Chang;Wang, Junsong
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.677-691
    • /
    • 2022
  • Water cycle algorithm (WCA) has been a very effective optimization technique for complex engineering problems. This study employs the WCA for simultaneous prediction of heating load (LH) and cooling load (LC) in residential buildings. This algorithm is responsible for optimally tuning a neural network (NN). Utilizing 614 records, the behavior of the LH and LC is explored and the captured knowledge is then used to predict for 154 unanalyzed building conditions. Since the WCA is a population-based algorithm, different numbers of the searching agents were tested to find the most optimum configuration. It was observed that the best solution is discovered by 500 agents. A comparison with five newly-developed benchmark optimizers, namely equilibrium optimizer (EO), multi-tracker optimization algorithm (MTOA), slime mould algorithm (SMA), multi-verse optimizer (MVO), and electromagnetic field optimization (EFO) revealed that the WCANN predicts the desired parameters with considerably larger accuracy. Obtained root mean square errors (1.4866, 2.1296, 2.8279, 2.5727, 2.5337, and 2.3029 for the LH and 2.1767, 2.6459, 3.1821, 2.9732, 2.9616, and 2.6890 for the LC) indicated that the most reliable prediction was presented by the proposed model. The EFONN, however, provided a more time-effective solution. Lastly, an explicit predictive formula was elicited from the WCANN.

Joint Antenna Selection and Multicast Precoding in Spatial Modulation Systems

  • Wei Liu;Xinxin Ma;Haoting Yan;Zhongnian Li;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3204-3217
    • /
    • 2023
  • In this paper, the downlink of the multicast based spatial modulation systems is investigated. Specifically, physical layer multicasting is introduced to increase the number of access users and to improve the communication rate of the spatial modulation system in which only single radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) of the multicast based spatial modulation system, a joint optimizing algorithm of antenna selection and multicast precoding is proposed. Firstly, the joint optimization is transformed into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel iterative algorithm based on the idea of branch and bound is proposed to obtain the quasioptimal solution. Furthermore, in order to balance the performance and time complexity, a low-complexity deflation algorithm based on the successive convex approximation is proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm under the same BER accuracy conditions.