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Abstract 
The traveling salesman problem (TSP) is one of the well-known 
and extensively studied NPC problems in combinatorial 
optimization. To solve it effectively and efficiently, various 
optimization algorithms have been developed by scientists and 
researchers. However, most optimization algorithms are designed 
based on the concept of improving route in the iterative 
improvement process so that the optimal solution can be finally 
found. In contrast, there have been relatively few algorithms to 
find the optimal solution using route construction mechanism. In 
this paper, we propose a route construction optimization 
algorithm to solve the symmetric TSP with the help of ratio value. 
The proposed algorithm starts with a set of sub-routes consisting 
of three cities, and then each good sub-route is enhanced step by 
step on both ends until feasible routes are formed. Before each 
subsequent expansion, a ratio value is adopted such that the good 
routes are retained. The experiments are conducted on a 
collection of benchmark symmetric TSP datasets to evaluate the 
algorithm. The experimental results demonstrate that the 
proposed algorithm produces the best-known optimal results in 
some cases, and performs better than some other route 
construction optimization algorithms in many symmetric TSP 
datasets. 
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1. Introduction 

Combinatorial optimization problems are broadly 
studied in the fields of theoretical computer science, 
artificial intelligence, operations research, and discrete 
mathematics. The traveling salesman problem (TSP) is one 
of the most used problems in combinatorial optimization, 
specifically in transportation and distribution logistics. It is 
a problem of finding the shortest route among a set of 
cities that visits each city exactly once and finally returns 
to the starting city. The TSP is easy to understand but is 
inherently intractable. Indeed, it has been proven to be an 
NPC problem which means that no polynomial time 
algorithm exists to effectively solve it [1]. The TSP 
provides an ideal platform for the study of combinatorial 
optimization problems. It’s not like that anyone would 
want to plan to visit some cities or places, rather many real 
life optimization problems can be formulated as TSP 

problem. Examples of such real world applications are the 
movement of people, drilling of printed circuit boards, 
vehicle routing and scheduling, postal delivery, computer 
wiring, control of robots, garbage collection, construction 
of smart cities, and machine scheduling, to quote a few. 
Thus, the study of solving TSP has not only academic 
interest, but also has important theoretical, engineering, 
and practical significance and, consequently, it has been an 
important research topic of active research. 

In the graph theory, the TSP problem can be expressed 
by a weighted complete graph: ( , , ),G V E W where 

 1 2, , , nV v v v   denotes the vertices, which represents 

the nodes of the graph, V n  is the total number of 

vertex,   1ijE e i j n     is the set of edges which 

represents the interconnections between the vertices or 
nodes, and :W E  �  is the weight function which is 
associated with each edge of the graph. The TSP problem 
may be symmetric or asymmetric. For symmetric TSP, the 
weight of each edge of the graph G  is equal in both 
directions, i.e., ( ) ( );ij ji ijW e W e e E   . On the other 

hand, in case of asymmetric TSP, there exists at least one 
edge ije E  in G  for which ( ) ( )ij jiW e W e . In this 

paper, we concentrate on the solution of symmetric TSP 
problem. The objective of the TSP problem is to construct 
a feasible route with n  distinct cities such that the total 

travel cost (distance)  f Z  of the route is minimized. 

Let  ,ij i jd d v v  be the weight (distance) of the 

edge ije between the node iv  and jv .Then, the 

mathematical model of TSP problem can be formulated as 
below [2]: 
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where 1ijx   if the salesman travel from node iv  to 

node jv , otherwise 0ijx  . Let  1 2 1, , , , ,nx x x x  

distinct ,ix V i V     be a feasible route and  f Z  
be its route cost (distance). Then, the optimization 
formulation Eq.(1). of TSP problem is reduced to the 
following formulation [3]: 
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Due to the importance and applicability, many 

optimization algorithms have been proposed to deal with 
TSP problem. However, they do not guarantee for 
optimality, but provide an approximate solution near to the 
optimal solution. Indeed, it is not always true that the 
ultimate goal of a TSP solution is to explore an optimal 
solution [4, 5]. Rather, a good solution may be required 
instead of the optimal one in practical application. This 
practical solution may have some bounds such as a 
guarantee to be within a certain percentage of the optimal 
solution, for a certain percentage of the TSP instances [4, 
6]. In this context, the heuristic based optimization 
algorithms are much more suited to handle this complex 
problem. The simplest and most easily implemented 
heuristic based optimization algorithms are route 
construction optimization algorithms. They follow 
well-defined rules to construct the route gradually [7]. The 
route is built only once during the running of the algorithm 
without making changes the part of route that is already 
built. The solution of these algorithms is usually not good 
but in some practical situations, they are useful. However, 
there have been relatively few route construction 
optimization algorithms in the literature for solving the 
TSP problem. 

Motivated by the insufficiency of route construction 
algorithm, this paper takes an attempt to solve the 
symmetric TSP by proposing a route construction 
optimization algorithm with the help of ratio value. The 
concept of ratio value was introduced by Rahman and Ma 
to solve routing problems [8-10]. They adopt a ratio value 
in the construction process in such a way that an initial 
ratio value is set up in the first step, and then it is 
decreased with time in the following steps of the process. 
As a result, the search engine may not be able to retain 
enough routes in each step, even retains one single route in 
some cases. In this paper, we set up a ratio value in the 
first step, and then the algorithm dynamically adjusts it in 
the rest of the steps during the optimization process. The 
remainder of this paper is organized as follows; Section 2 
reviews the related literature to solve the TSP problem. 
Section 3 elaborates the proposed route construction 
technique. Section 4 presents experimental results and 

analysis that include the experiment set up, description of 
tested datasets, description and analysis of the simulated 
results and comparison of the simulated results with other 
route construction algorithms. Finally, Section 5 concludes 
the paper. 

2. Related Literature 

The route construction algorithms for the TSP generate 
a feasible route step by step by using various strategies. 
They start with a sub-route or path and then include the 
closest city to the sub-route or path at each step until a 
feasible route is formed. The parts of the route already 
constructed remain in a certain sense unchanged 
throughout construction process. The simplest route 
construction algorithm for TSP is the so-called nearest 
neighbor (NN) algorithm which attempts to construct the 
route based on connections to near neighbors [11]. It starts 
with a randomly chosen city as the starting city of the 
route and then includes the next city which is nearest to the 
last city. This process continues until all the cities are 
included on the route, and finally the last city is joined 
with the first city to form a feasible route. The 
performance of this algorithm is very sensitive to the 
choice of starting city. The way to solve this issue is to 
repeat the algorithm for each possible city as the starting 
city. Then the route with the smallest distance from the 
generated routes is considered as the optimal route. This 
extension is known as the repetitive nearest neighbor 
(RNN) algorithm [12].   

The main problem with NN algorithm is that several 
cities are "forgotten" during construction process and have 
to be inserted with higher cost at the end of the process. As 
a result, the length of the final feasible route is increased 
significantly, and hence the effectiveness of the algorithm 
is decreased. To mitigate this drawback, many researchers 
have been improved it by applying various strategies. 
Bentley used a double-sided NN algorithm that permits the 
path to enhance on both ends [13]. This approach performs 
NN search on both ends of the route and the path with the 
smallest length is selected. Burke utilized route concept 
instead of path during the construction process [14]. 
Jünger et al. adopted an insertion strategy of forgotten 
cities to avoid including too many isolated cities at the end 
of the process [15]. Recently, Klug et al. extended the NN 
algorithm to k-RNN for solving both symmetric and 
asymmetric TSPs [16]. In this algorithm, the process starts 
with all possible sub-routes consisting of k (k=2) cities. 
After that, each sub-routes repeatedly extend either one 
side (for 2-RNN) or both sides (for Bi-2-RNN) by using a 
standard NN algorithm, and finally return the best route 
found. Their experiments illustrated that overall the 
2-RNN performs relatively better than the standard NN, 
RNN, and Bi-2-RNN.  
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Another intuitively appealing route construction 
algorithm is known as the insertion algorithm (IA) [12-13, 
15], which begins with sub-routes consisting of a few 
cities and then extends these sub-routes by inserting the 
remaining cities. The city is usually inserted into the 
sub-route at the point in such a way that the net increase in 
the cost of the route is minimum. This insertion process is 
continued until all the cities are included in the sub-route. 
The performance of this algorithm depends on three 
important factors, such as the choice of starting sub-route, 
selecting the most useful city from the remaining cities for 
insertion, and determining the most beneficial part of the 
sub-route where the selected city needs to be inserted. The 
initial sub-route typically consists of one to three cities in 
this approach [15]. There are four variants of this 
algorithm are available based on the way to choose the 
next city is to be inserted on the route to extend the current 
sub-route, which are nearest insertion (NI), farthest 
insertion (FI), cheapest insertion (CI) and arbitrary 
insertion (AI) [15]. In general, FI and AI algorithms 
generate better quality solution than NI algorithm [5].  

The Multi-fragment (MF) algorithm is an interesting 
route construction algorithm that considers the edges as 
the main parameter to construct the TSP route [7, 11, 13]. 
It starts with the shortest edge, and then repeatedly added 
the shortest remaining available edges in the route until a 
feasible route is formed. This algorithm is also called the 
greedy algorithm [11]. On the other hand, several route 
construction algorithms based on the concept of minimum 
spanning tree (MST) are reported in the literature. The 
Double-tree and Christofides algorithms are among the 
two simple MST based route construction algorithms 
[17-18]. Both algorithms start with an MST and differ only 
in how a TSP route is constructed from the tree. In the 
Double-tree algorithm, all the edges of the MST are taken 
twice and the TSP route is constructed by traversing the 
Euler cycle and selecting the nodes in the order they are 
first encountered. In the Christofides algorithm, the 
minimum cost perfect matching on the odd-degree nodes 
of MST is obtained first, and then it is added to the MST 
of the graph. Finally, the TSP route is generated by 
traversing the Euler cycle and selecting the nodes in the 
order they are first encountered. However, they are 
particularly appropriate for the TSP instances satisfying 
triangular inequality. 

3. Proposed Route Construction Framework 

The proposed optimization algorithm requires 
performing several steps to reach an optimal solution of 
the problem, and it accomplishes two different tasks at 
each step of the procedure. That is, it first generates 
possible routes and then keeps the good routes. The whole 

searching process of the proposed approach can be 
described as sequence of steps as follows: 

Step-1: Let G  be a complete graph of n  cities TSP 

problem with vertex list  1 2, , , nV v v v  and edge set 

  1ijE e i j n    . The vertices represent the 

locations or positions of the cities in a coordinate system 
and edges’ weights (distances) denote travel length, time, 
cost, etc. In the first step, the search engine generates 
sub-routes with three cities by considering all possible 
triplets of the node from graph G . Therefore, the set of 

possible routes in this step can be expressed as below 
[8-10]: 

 

  , , : , , ; ; , , 1, 2, ,i j k i j kv v v v v v V i j k i j k n                

(3) 
After that, the quality or the fitness value of each route is 
measured based on the Euclidean distance value. Let 

     , , , and ,i i j j k kx y x y x y  be the Cartesian coordinate 

of the location of the nodes , andi j kv v v , respectively. 

Then, the fitness value of the route is calculated by using 
the formula Eq.(4). The quality of the route is inversely 
proportional to the distance, i.e., the route with a lower 
fitness value is more fitter and vice versa. Finally, the 
search engine keeps some good routes based on the fitness 
value by adopting a ratio value. 
 

       2 2 2 2

i j i j j k j kx x y y x x y y         (4) 

 
Step-2: This step uses good routes obtained from first step 
to produce sub-routes with five cites. Indeed, each good 
route of first step is extended on both ends in this step. 
Thus, the set of possible routes can be constructed as 
follows [8-10]: 
 

     , , , , : good route , , ;s i j k t i j kv v v v v v v v     

, ; ; , , , ; , 1,2, ,s tv v V s t s t i j k s t n        (5) 

 
Like as Step-1, the fitness value of each route is measured 
based on the Euclidean distance value, and then the 
procedure retains some good routes using ratio value 
following the fitness value. These good routes are used to 
yield seven cities route in the next step. In this fashion, the 
procedure is continued until a set of feasible good routes 
are obtained. Finally, a good feasible route is to find out 
from there. 
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4. Performance Evaluation and Comparison 

In this section, we conduct a number of experiments to 
evaluate the effectiveness of the proposed algorithm based 
on the benchmark symmetric TSP datasets ranging from 
14 up to 1032 cities. The numerical figure appears in the 
dataset name denotes the dimension of the problem, e.g. 
burma14 is a 14-cities TSP dataset and si1032 is a 
1032-cities TSP dataset. The tested datasets and their 
best-known optimal solutions are taken from the 
well-known TSPLIB [19-21]. Actually, TSPLIB is a 
publicly available online TSP library, which was published 
on the websites of Heidelberg University and the 
University of Waterloo. It was created and managed by 
Reinelt [19-20] and Cook [21], respectively. A detailed 
description of this data library is reported in [22]. The data 
library also provides the best-known optimal solution for 
each dataset. All the technical computations in this 
research are carried out on a 2 core GPU system, while the 
implementation software is MATLAB R2016b. The ratio 
value is fitted by trial and error method, and the proper 
adjustment for this work is presented in Eq.(6).  

 

n




                           (6) 

 
In the above equation, n  denotes the dimension of the 

problem,  1, 2,     indicates the step number, and 

  is the constant. Through the experiment we found that 

3 2 3 2

2 2 1300 1300
,

3 2 3 2

n n

n n n n n n
         

�  is the proper 

adjustment for this research. In addition, if the search 
engine keeps a single route at a step, the ratio value is 
increased in such a case that the number of retaining routes 
does not exceed 50. Performance evaluation and 
comparison are given in the following two subsections 
consecutively. 

4.1 Performance Evaluation 

Two performance evaluation indicators such as the 
deviation of the simulated solution from the optimal 
solution, i.e., Error (measured in percentage) and the 
required execution time (measured in seconds) are 
computed to evaluate the performance of the proposed 
optimization algorithm. The percentage deviation of the 
simulated solution from optimal (Error (%)) is calculated 
based on the Eq.(7). To measure the required execution 
time, the algorithm runs 10 consecutive times 
independently for each TSP datasets. After that, the 
average computational time is calculated on the basis of 10 
values obtained from these 10 runs. 

 

  Our Result - Optimum
Error % 100

Optimum
           (7) 

The results for the 16 symmetric TSP datasets obtained 
from our experiments along with the loss of efficiency and 
required running time are displayed in Table 1. In the table, 
the first column represents the serial number (S/N) of the 
datasets, the second column contains the name of each 
dataset, the third column brings the size (dimension) of 
each dataset, the fourth column stands for the length of 
optimal route reported by the data library, the fifth column 
carries the length of obtained optimal route by the 
proposed algorithm, the sixth column represents the 
percentage of excess length by which the obtained length 
exceeds the optimal route length, and the final column 
available for the average required computational time (in 
seconds) of each TSP datasets. The datasets whose 
best-known optimal solutions are obtained by the proposed 
approach are highlighted in bold face. 

 
Table 1: Computational results of the proposed algorithm for 16 
symmetric TSP datasets taken from TSPLIB. 
S/
N

Datasets Scale Optimum 
Our 
Result 

Error 
(%) 

Time(s) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14
15
16

burma14 
p15 
ulysses16 
gr17 
gr21 
gr24 
fri26 
bays29 
bayg29 
hk48 
att48 
brazil58 
si175 
brg180 
si535 
si1032 

14 
15 
16 
17 
21 
24 
26 
29 
29 
48 
48 
58 
175 
180 
535 
1032 

3323 
291 
6859 
2085 
2707 
1272 
937 
2020 
1610 
11461 
10628 
25395 
21407 
1950 
48450 
92650 

3323 
291 
6859 
2085 
2707 
1272 
937 
2093 
1667 
11461 
10671 
25649 
21913 
1960 
49918 
95039 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
3.6139 
3.5404 
0.0000 
0.4046 
1.0002 
2.3637 
0.5128 
3.0299 
2.5785 

2.1148 
0.0101 
4.1738 
0.0181 
0.3412 
31.278 
0.4982 
613.20 
0.0282 
206.80 
1265.20 
2.2556 
166.04 
347.34 
5160.10 
17620.30 

Average Error (SD): 1.07(1.42)

 
The results of Table 1 indicate that the proposed 

optimization algorithm produces the closest optimal 
solutions to the datasets considered for the test, and the 
errors of the solutions are very small. For some datasets, 
such as burma14, p15, ulysses16, gr17, gr21, gr24, fri26, 
and hk48, the error of the solution is 0, which indicates 
that the proposed algorithm captures exactly the 
best-known optimal solutions with good robustness in 
these cases. For the other tested datasets, the loss of 
efficiency no more than 3.61%  in which the error lies 

within the interval of  0.4%, 1%  in three datasets such 

as att48, brazil58 and brg180. In addition, the average of 
error over all of the considered datasets is only 1.07%  
and the standard deviation (SD) value of the error is 1.42 . 

On the other hand, the proposed algorithm expenses a little 
amount of run time to solve small size datasets and for 
others, it takes comparatively more time. Although the 
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Fig. 2 Comparison of average percentage error over all the 34 
symmetric TSP datasets of the proposed algorithm with the recent 
k-RNN algorithms. 

required execution time is comparatively higher in large 
scale datasets, the quality of the solution is satisfactory and 
the error lies within the interval of  0.4%,3.61% . In order 

to facilitate observation, the comparison of the obtained 
optimal solutions with the best-known optimal solutions is 
illustrated graphically. This is shown in the form of bar 
charts in Fig. 1. From the comparison bar chart, one can 
easily get an idea about the results of the proposed 
algorithm intuitively. It can be observed from the bar chart 
that in some cases, especially in last two large datasets, 
such as si535 and si1032, the computed optimal route 
length is slightly higher than the best-known optimal route 
length. However, the algorithm is still capable of 
producing solution near to the best-known optimal 
solution for the tested TSP datasets in a reasonable 
computational time frame. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

4.2 Performance Comparison with other Route 
Construction Algorithms 

In this subsection, we examine the performance of the 
proposed route construction optimization algorithm with 
other route construction optimization algorithms available 
in the literature. To do this, seven algorithms are 
considered in which one algorithm is the recently 
improved algorithm and the others are conventional 
algorithms. Actually, the simulated results of the proposed 
algorithm are compared with the results obtained by the 
algorithms described in reference articles. The authors of 
different articles considered different sets of datasets to 
test their algorithms. For this reason, seven algorithms are 
divided into three groups, and different set of datasets are 
used to compare the proposed algorithm with each group. 
Side by side comparisons for the symmetric TSP datasets 
are displayed in Table 2 - Table 4. The best results 
obtained across all algorithms are highlighted in boldface. 
Furthermore, the comparison between our algorithm and 

the comparison algorithms are depicted graphically in 
Fig.2 - Fig.4 for further visualization of the performance of 
the proposed algorithm. Indeed, the competitive behavior 
of our algorithm is tested based on the following route 
construction algorithms: 

 
1. Nearest Neighbour Optimization Algorithm (NN) [23] 
2. Extending NN Optimization Algorithm (k-RNN) [16] 
3. Multi-fragment Optimization Algorithm (MF) [23] 
4. Christofides Optimization Algorithm [23] 
5. Farthest Insertion Optimization Algorithm (FI) [7] 
6. Boruvka's Optimization Algorithm (Bor) [7] 
7. Quick-Boruvka's Optimization Algorithm (Q-Bor) [7] 

 
The comparison of 34 symmetric TSP datasets with the 

recently improved of NN algorithm named k-RNN are 
summarized in Table 2. The literature of k-RNN reported 
three extension of NN algorithm such as 1-RNN, 2-RNN, 
and Bi-2-RNN. The results of Table 2 show that the 
proposed algorithm is very competitive with each of three 
extensions. For the considered 34 datasets, our algorithm 
yields the best solutions in 22 datasets, as opposed to 
1-RNN, 2-RNN and Bi-2-RNN, which give the best 
solution in 0, 4 and 9 datasets, respectively. Besides this, 
the average percentage error of our algorithm over all the 
datasets is 9.38, which is better than the 24.02 of 1-RNN, 
11.75 of 2-RNN and 22.25 of Bi-2-RNN, respectively. In 
addition, our algorithm provides the best-known optimal 
solutions in some datasets (gr17, gr21, gr24, fri26 and 
hk48), but none of the comparison algorithms find such 
type of solution. It is also visible from the table that in 
large scale datasets such as si535, si1032, and nrw1379, 
the effectiveness of the proposed algorithm is inferior 
compared to k-RNN. However, its performance over all 
the tested datasets is still better than the improvement of 
NN algorithm. The comparison of the proposed algorithm 
with k-RNN is also depicted graphically in Fig. 2, which 
further shows the superior performance of the proposed 
algorithm. In fact, there is a significant difference between 
the bar of our algorithm and the compared algorithms. 

 

Fig. 1 Comparison of obtained optimal solutions by the proposed 
optimization algorithm with the best-known optimal solutions. 
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Table 2: Performance comparison of the proposed algorithm with the 
recently improved of NN algorithm (k-RNN) for 34 symmetric TSP 
datasets. 

Datasets     Scale 
Error (%) of k-RNN (2019) [16] Our 

Result 1-RNN 2-RNN Bi-2-RNN 

gr17 
gr21 
gr24 
fri26 
swiss42 
dantzig42 
gr48 
hk48 
eil51 
berlin52 
brazil58 
eil76 
pr76 
kroA100 
kroB100 
kroC100 
kroD100 
kroE100 
eil101 
lin105 
gr120 
bier127 
ch130 
kroB150 
si175 
brg180 
d198 
kroA200 
kroB200 
gil262 
lin318 
si535 
si1032 
nrw1379 

17 
21 
24 
26 
42 
42 
48 
48 
51 
52 
58 
76 
76 
100 
100 
100 
100 
100 
101 
105 
120 
127 
130 
150 
175 
180 
198 
200 
200 
262 
318 
535 
1032 
1379 

4.46 
10.93 
22.09 
2.99 
12.88 
23.61 
15.74 
5.90 
13.15 
8.47 
7.83 
13.01 
21.04 
16.05 
16.91 
14.03 
16.71 
12.30 
18.60 
17.78 
21.55 
13.25 
16.68 
20.98 
2.77 
355.90 
11.66 
17.62 
20.22 
18.71 
17.06 
3.27 
1.55 
21.00 

4.46 
9.27 
10.06 
2.35 
11.94 
18.17 
10.21 
4.97 
10.80 
5.65 
7.16 
11.15 
19.04 
15.51 
14.06 
13.75 
15.54 
10.77 
18.12 
12.30 
20.07 
8.71 
12.98 
20.64 
2.33 
3.59 
10.30 
17.62 
19.86 
16.36 
17.06 
3.27 
1.44 
19.84 

4.46 
10.75 
16.04 
2.45 
6.05 
21.32 
12.86 
4.62 
13.38 
11.11 
6.77 
7.06 
19.70 
15.35 
15.38 
15.52 
11.40 
9.59 
17.33 
10.42 
21.16 
9.17 
11.83 
14.98 
2.43 
355.90 
12.50 
20.30 
20.44 
16.40 
16.58 
2.90 
1.17 
19.03 

0.0000 
0.0000 
0.0000 
0.0000 
8.0911 
9.0129 
11.5339 
0.0000 
7.0094 
4.9059 
1.0002 
11.7955 
15.3302 
15.1724 
6.4451 
13.1062 
13.6448 
10.1120 
15.9300 
15.7104 
17.1132 
11.8682 
14.5990 
12.2044 
2.3637 
0.5128 
10.0507 
14.3672 
19.6948 
15.0841 
16.2543 
3.0299 
2.5785 
20.3379 

Average Error : 
         (SD): 

24.02 
(58.97) 

11.75 
(5.88) 

22.25 
(59.25) 

9.38 
(6.49) 

 
Table 3 and Fig. 3 show the performance comparison 

of 20 symmetric TSP benchmark datasets with three 
conventional algorithms namely the nearest neighbour 
optimization algorithm (NN), Multi-fragment optimization 
algorithm (MF) and Christofides optimization algorithm. 
From the comparison, it can be observed that the proposed 
approach exhibits a competitive behavior with other 
considered algorithms. It finds the best solution in 9 out of 
20 datasets, while NN, MF and Christofides provide the 
best solution in the 1, 2, and 8 datasets, respectively. 
Moreover, the average error over all 20 datasets of our 
algorithm is 11.85, which is better than the 24.88 of NN, 
17.38 of MF, and 14.89 of Christofides, respectively. 
Although Christofides produces better solutions in some 
specific datasets, still our algorithm performs better over 
all the considered datasets. From Fig. 3, it can easily be 
seen that the superior performance of the proposed 
optimization algorithm. 

 
 
 

Table 3: Performance comparison of the proposed algorithm with the 
Nearest Neighbour (NN), Multi-fragment (Greedy) (MF) and 
Christofides route construction algorithms for 20 symmetric TSP 
datasets. 

Datasets    Scale
Error (%) [23] Our 

Result NN MF Christofides 

att48 
eil51 
berlin52 
eil76 
kroA100 
kroB100 
kroC100 
kroD100 
kroE100 
lin105 
pr107 
bier127 
ch130 
ch150 
kroA150 
kroB150 
d198 
kroA200 
gil262 
lin318 

48 
51 
52 
76 
100 
100 
100 
100 
100 
105 
107 
127 
130 
150 
150 
150 
198 
200 
262 
318 

20.89 
20.57 
19.08 
32.34 
26.19 
31.68 
26.88 
26.56 
25.01 
41.61 
5.36 
14.77 
23.98 
25.53 
26.71 
25.62 
18.00 
21.90 
36.31 
28.56 

19.80 
13.03 
31.98 
14.71 
13.70 
16.59 
12.94 
14.82 
12.59 
16.64 
6.60 
14.77 
28.40 
18.61 
20.24 
20.25 
22.20 
17.83 
13.21 
18.75 

20.29 
17.33 
12.16 
17.20 
18.53 
9.19 
13.68 
13.47 
9.31 
26.26 
9.70 
11.16 
13.15 
9.11 
16.13 
22.54 
14.57 
13.43 
13.19 
17.40 

0.4046 
7.0094 
4.9059 
11.7955 
15.1724 
6.4451 
13.1062 
13.6448 
10.1120 
15.7104 
13.8704 
11.8682 
14.5990 
10.2298 
20.2458 
12.2044 
10.0507 
14.3672 
15.0841 
16.2543 

Average Error : 
         (SD): 

24.88 
(7.78) 

17.38 
(5.69) 

14.89 
(4.62) 

11.85 
(4.53) 

 
 

 

 

 

 

 

 

 
Performance comparison with Farthest Insertion (FI), 

Boruvka's (Bor) and Quick-Boruvka's (Q-Bor) 
optimization algorithms for the 11 symmetric TSP 
benchmark datasets are displayed in tabular form in Table 
4 and graphically in Fig. 4. From Table 4 and Fig. 4, it can 
be noticed that the proposed algorithm significantly 
dominates FI and Q-Bor. But its performance almost 
similar to the Bor over all the considered datasets. In fact, 
Bor performs well on relatively large datasets where our 
algorithm finds the best solution in small cases. For the 
considered 11 datasets, the proposed algorithm captures 

 

Fig. 3 Comparison of average percentage error over all the 20 
symmetric TSP datasets of the proposed algorithm with the Nearest 
Neighbour (NN), Multi-fragment (Greedy) (MF) and Christofides 
algorithms over 20 symmetric TSP datasets. 
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the best solution in 5 datasets, where the best performance 
appears in 1 case by FI and Q-Bor and 4 cases by Bor. 
Besides this, the overall penalty on the solution of our 
algorithm is 17.33, which is better than FI's 28.80, Bor's 
17.63, and Q-Bor's 22.84. Thus, it can be concluded that 
the performance of the proposed algorithm is superior than 
FI and Q-Bor but inferior against Bor in large scale 
datasets. Thus, it can be said that the performance of the 
proposed algorithm is better compared to the other 
considered algorithms in many symmetric TSP datasets. In 
addition, the average percentage error and the standard 
deviation value computed by the proposed algorithm over 
all the datasets in each group are lower than other 
considered route construction algorithms. 

 
Table 4: Performance comparison of the proposed algorithm with 
Farthest Insertion (FI), Bor_uvka's (Bor) and Quick-Bor_uvka's (Q-Bor) 
route construction algorithms for 11 symmetric TSP datasets. 

Datasets    Scale 
Error (%) [7] Our 

Result FI Bor Q-Bor 

st70 
kroA100 
pr107 
pr136 
ch150 
kroA200 
gil262 
rd400 
417 
rat575 
nrw1379 

70 
100 
107 
136 
150 
200 
262 
400 
417 
575 
1379 

27.96 
26.85 
5.18 
22.18 
24.86 
35.48 
31.96 
34.90 
31.72 
36.57 
39.09 

12.15 
19.57 
7.15 
19.92 
22.43 
18.53 
15.33 
22.48 
23.85 
17.26 
15.22 

23.35 
28.47 
20.46 
21.99 
25.87 
20.89 
20.15 
18.05 
37.13 
18.22 
16.67 

12.1800 
15.1724 
13.8704 
18.8095 
10.2298 
14.3672 
15.0841 
21.5954 
29.8879 
19.0935 
20.3379 

Average Error : 
         (SD): 

28.80 
(9.43) 

17.63 
(4.96) 

22.84 
(5.87) 

17.33 
(5.46) 

 

 

 

 

 

 

5. Conclusion 

We have established a route construction optimization 
algorithm in an intelligent way with the help of ratio value 
for finding the optimal solutions of the symmetric TSPs. 
The algorithm starts with the sub-routes and the good 

routes are enlarged step by step, meanwhile, the worse 
routes are kicked out from the search environment. Indeed, 
the algorithm is composed of several steps and in each step, 
it performs two main tasks. It first generates possible 
routes in the search environment and then retains the good 
routes in the environment by using a rigorous ratio value. 
The proposed optimization algorithm is completely 
different from other route construction optimization 
algorithms in the route construction process. The main 
contribution of this research is to introduce the intuitive 
assumption that we can construct the best routes step by 
step by adopting a ratio value in the construction process. 
It is demonstrated by the experimental results that the 
proposed algorithm obtains the best-known optimal 
solutions in some cases and generally shows the 
competitive behavior with the other route construction 
optimization algorithms. 
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