• 제목/요약/키워드: Soliton

검색결과 159건 처리시간 0.02초

GRADIENT YAMABE SOLITONS WITH CONFORMAL VECTOR FIELD

  • Fasihi-Ramandi, Ghodratallah;Ghahremani-Gol, Hajar
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.165-171
    • /
    • 2021
  • The purpose of this paper is to investigate the geometry of complete gradient Yamabe soliton (Mn, g, f, λ) with constant scalar curvature admitting a non-homothetic conformal vector field V leaving the potential vector field invariant. We show that in such manifolds the potential function f is constant and the scalar curvature of g is determined by its soliton scalar. Considering the locally conformally flat case and conformal vector field V, without constant scalar curvature assumption, we show that g has constant curvature and determines the potential function f explicitly.

On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds

  • Majhi, Pradip;Dey, Dibakar
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.781-790
    • /
    • 2021
  • The goal of this paper is to characterize a class of almost Kenmotsu manifolds admitting *-conformal Ricci solitons. It is shown that if a (2n + 1)-dimensional (k, µ)'-almost Kenmotsu manifold M admits *-conformal Ricci soliton, then the manifold M is *-Ricci flat and locally isometric to ℍn+1(-4) × ℝn. The result is also verified by an example.

CONFORMAL RICCI SOLITON ON PARACONTACT METRIC (k, 𝜇)-MANIFOLDS WITH SCHOUTEN-VAN KAMPEN CONNECTION

  • Pardip Mandal;Mohammad Hasan Shahid;Sarvesh Kumar Yadav
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.161-173
    • /
    • 2024
  • The main object of the present paper is to study conformal Ricci soliton on paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection. Further, we obtain the result when paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection satisfying the condition $^*_C({\xi},U){\cdot}^*_S=0$. Finally we characterized concircular curvature tensor on paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection.

∗-RICCI SOLITONS AND ∗-GRADIENT RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

  • Dey, Dibakar;Majhi, Pradip
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.625-637
    • /
    • 2020
  • The object of the present paper is to characterize 3-dimensional trans-Sasakian manifolds of type (α, β) admitting ∗-Ricci solitons and ∗-gradient Ricci solitons. Under certain restrictions on the smooth functions α and β, we have proved that a trans-Sasakian 3-manifold of type (α, β) admitting a ∗-Ricci soliton reduces to a β-Kenmotsu manifold and admitting a ∗-gradient Ricci soliton is either flat or ∗-Einstein or it becomes a β-Kenmotsu manifold. Also an illustrative example is presented to verify our results.

비선형 분산 광 전송 매질에 있어서 인접 광 솔리톤간의 신뢰도 및 최대 전송거리 분석 (Reliability and maximum transmission length analysis between adjacent optical solitons in nonlinear dispersive transmission materials)

  • 변승우;김종규;송재원
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권3호
    • /
    • pp.246-250
    • /
    • 1996
  • In optical soliton transmission systems with nonlinear dispersive materials, which is utilized for ultra-long and high bit rate transmission, it is shown that the value of initial time difference between adjacent solitons is analyzed for optimum bit rate. The method is inducted by uncorrelation condition with minimum interaction forces in initial covariance coefficient between adjacent solitons. When the initial time difference is 6 times of soliton pulse width by the results, it is shown that the reliability is maintained with more than 90% within transmission length of soliton period. multiplied by 93.

  • PDF

RICCI SOLITONS ON RICCI PSEUDOSYMMETRIC (LCS)n-MANIFOLDS

  • Hui, Shyamal Kumar;Lemence, Richard S.;Chakraborty, Debabrata
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.325-346
    • /
    • 2018
  • The object of the present paper is to study some types of Ricci pseudosymmetric $(LCS)_n$-manifolds whose metric is Ricci soliton. We found the conditions when Ricci soliton on concircular Ricci pseudosymmetric, projective Ricci pseudosymmetric, $W_3$-Ricci pseudosymmetric, conharmonic Ricci pseudosymmetric, conformal Ricci pseudosymmetric $(LCS)_n$-manifolds to be shrinking, steady and expanding. We also construct an example of concircular Ricci pseudosymmetric $(LCS)_3$-manifold whose metric is Ricci soliton.

SOME RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH GENERALIZED (k, µ)'-NULLITY DISTRIBUTION

  • De, Uday Chand;Ghosh, Gopal
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1289-1301
    • /
    • 2019
  • In the present paper, we prove that if there exists a second order parallel tensor on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$, then either the manifold is isometric to $H^{n+1}(-4){\times}{\mathbb{R}}^n$, or, the second order parallel tensor is a constant multiple of the associated metric tensor of $M^{2n+1}$ under certain restriction on k, ${\mu}$. Besides this, we study Ricci soliton on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution. Finally, we characterize such a manifold admitting generalized Ricci soliton.

CERTAIN SOLITONS ON GENERALIZED (𝜅, 𝜇) CONTACT METRIC MANIFOLDS

  • Sarkar, Avijit;Bhakta, Pradip
    • Korean Journal of Mathematics
    • /
    • 제28권4호
    • /
    • pp.847-863
    • /
    • 2020
  • The aim of the present paper is to study some solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. We study gradient Yamabe solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. It is proved that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is gradient Einstein soliton then ${\mu}={\frac{2{\kappa}}{{\kappa}-2}}$. It is shown that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is closed m-quasi Einstein metric then ${\kappa}={\frac{\lambda}{m+2}}$ and 𝜇 = 0. We also study conformal gradient Ricci solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds.

RIEMANN SOLITONS ON (κ, µ)-ALMOST COSYMPLECTIC MANIFOLDS

  • Prakasha D. Gowda;Devaraja M. Naik;Amruthalakshmi M. Ravindranatha;Venkatesha Venkatesha
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.881-892
    • /
    • 2023
  • In this paper, we study almost cosymplectic manifolds with nullity distributions admitting Riemann solitons and gradient almost Riemann solitons. First, we consider Riemann soliton on (κ, µ)-almost cosymplectic manifold M with κ < 0 and we show that the soliton is expanding with ${\lambda}{\frac{\kappa}{2n-1}}(4n - 1)$ and M is locally isometric to the Lie group Gρ. Finally, we prove the non-existence of gradient almost Riemann soliton on a (κ, µ)-almost cosymplectic manifold of dimension greater than 3 with κ < 0.

Synchronization of a Silica Microcomb to a Mode-locked Laser with a Fractional Optoelectronic Phase-locked Loop

  • Hui Yang;Changmin Ahn;Igju Jeon;Daewon Suk;Hansuek Lee;Jungwon Kim
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.557-561
    • /
    • 2023
  • Ultralow-noise soliton pulse generation over a wider Fourier frequency range is highly desirable for many high-precision applications. Here, we realize a low-phase-noise soliton pulse generation by transferring the low phase noise of a mode-locked laser to a silica microcomb. A 21.956-GHz and a 9.9167-GHz Kerr soliton combs are synchronized to a 2-GHz and a 2.5-GHz mode-locked laser through a fractional optoelectronic phase-locked loop, respectively. The phase noise of the microcomb was suppressed by up to ~40 dB at 1-Hz Fourier frequency. This result provides a simple method for low-phase-noise soliton pulse generation, thereby facilitating extensive applications.