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Abstract. In this paper, we study almost cosymplectic manifolds with
nullity distributions admitting Riemann solitons and gradient almost Rie-

mann solitons. First, we consider Riemann soliton on (κ, µ)-almost cosym-

plectic manifold M with κ < 0 and we show that the soliton is expanding
with λ = κ

2n−1
(4n − 1) and M is locally isometric to the Lie group Gρ.

Finally, we prove the non-existence of gradient almost Riemann soliton on

a (κ, µ)-almost cosymplectic manifold of dimension greater than 3 with

κ < 0.

1. Introduction

In 2016, Hirică and Udrişte [10] introduced and studied the notion of Rie-
mann soliton as an analog of Ricci soliton. Since then, it attracted many
attentions in differential geometry of almost contact Riemannian geometry. A
Riemann soliton is regarded as the generalization of the space of constant cur-
vature, and also is a special solution to Riemann flow (see [15,16]). A solution
g(t) of the non-linear evolution PDE:

∂

∂t
G(t) = −2R(g(t)), t ∈ R

is called the Riemann flow, where G = 1
2g ⊙ g, R is the Riemann curvature

tensor associated to the metric g and ⊙ is Kulkarni-Nomizu product. Some
results in the Riemann flow resembles the case of Hamilton’s Ricci flow [9] (for
details, see [16]). A Riemannian manifold (M, g) is called a Riemann soliton if
there are a smooth vector field V and a scalar λ ∈ R such that

(1) 2R+ λg ⊙ g + g ⊙£V g = 0
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onM , where £V g is the Lie derivative of the metric g and⊙ is Kulkarni-Nomizu
product defined by (see Besse [1])

(p⊙ q)(X,Y, U,W ) = p(X,W )q(Y, U) + p(Y, U)q(X,W )(2)

− p(X,U)q(Y,W )− p(Y,W )q(X,U).

The Riemann soliton also corresponds as a fixed point of the Riemann flow, and
they can be viewed as a dynamical system, on the space of Riemannian metric
modulo diffeomorphism. A Riemann soliton is said to be shrinking, steady,
and expanding accordingly as λ is negative, zero, and positive, respectively. If
the potential vector field V is the gradient of some function u on M , then the
Riemann soliton equation becomes

(3) R+
1

2
λ(g ⊙ g) + (g ⊙Hess u) = 0,

where, Hess u denotes the Hessian of the smooth function u and characterizes
what is called a gradient Riemann soliton. A Riemann soliton on any compact
Riemannian manifold is always a gradient Riemann soliton. If the potential
vector field V vanishes identically, then the Riemann soliton becomes trivial,
and in this case manifold is of constant sectional curvature. If λ in equations (1)
and (3) is a smooth function, then g is called almost Riemann soliton and almost
gradient Riemann soliton, respectively. On a Sasakian manifold, the concept of
Riemann soliton becomes the Sasaki-Riemann soliton. In [10], it is proved that
if Sasakian manifold admits a Riemann soliton whose soliton vector field V is
pointwise collinear with ξ (or a gradient Riemann soliton and potential function
is harmonic), then it is Sasakian-space-form. Later, the characterization of
Riemann soliton in terms of infinitesimal harmonic transformation was carried
out by Stepanov and Tsyganok [14]. The problem of studying Riemann solitons
in the context of contact geometry was initiated by Devaraja et al. [6]. In
particular, they studied Riemann soliton (g, V ) with V as contact vector field
on a Sasakian manifold (M, g) and proved that in this case the manifold M is
either of constant curvature +1 (and V is Killing) or D-homothetically fixed
η-Einstein manifold (and V leaves the structure tensor ϕ invariant). Further,
they also shown that if a compact K-contact manifold whose metric g is a
gradient almost Riemann soliton, then it is Sasakian and isometric to a unit
sphere S2n+1. More recently, Venkatesha et al. [17] classified certain class
of almost Kenmotsu manifold which admits a Riemann soliton and almost
gradient Riemann soliton.

On the other hand, it is remark that one of the another important class of
research in almost contact manifolds is almost cosymplectic manifolds. Nowa-
days, many attention have been paid towards the study of geometry of al-
most cosymplectic manifolds. By an almost cosymplectic manifold, we mean a
smooth manifold of (2n + 1)-dimension equipped with a closed 1-form η and
a closed 2-form ω such that η ∧ ωn is a volume form. The concept was first
introduced by Goldberg and Yano [8] in 1969. The products of almost Kaehler
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manifolds and the real line R or the circle S1 are the simplest examples of al-
most cosymplectic manifolds. At this point, we refer the papers [5, 11, 12] and
the references therein to reader for a wide and detailed overview of the results
on almost cosymplectic manifolds.

The present paper is organized as follows: Section 2 is concerned with the ba-
sic formulas and properties of almost cosymplectic manifolds. In Section 3, the
Riemann soliton on a (κ, µ)-almost cosymplectic manifold is being considered
and obtained some interesting results. In the last section, we prove the non-
existence of gradient almost Riemann soliton on a (κ, µ)-almost cosymplectic
manifold of dimension greater than 3 with κ < 0.

2. Almost cosymplectic manifolds

Let M2n+1 be a (2n + 1)-dimensional Riemannian manifold. An almost
contact structure [2] on M2n+1 is a triple (ϕ, ξ, η), where ϕ is a tensor field of
type (1, 1), ξ is a characteristic or Reeb vector field and η is a 1-form satisfying

(4) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η · ϕ = 0.

The first and one of the remaining three relations in (4) imply the other two
relations in (4). In general, a smooth manifold M2n+1 together with the almost
contact structure (ϕ, ξ, η) is said to be an almost contact manifold. An almost
contact structure (ϕ, ξ, η) is said to be normal if the corresponding complex
structure J on M2n+1 × R defined by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
)

is integrable, where X is tangent to M2n+1, t is the coordinate of R, and f is
a smooth function on M2n+1 × R.

If an almost contact manifold (M2n+1, ϕ, ξ, η) admits a Riemannian metric
g satisfying

(5) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y , then the manifold is called an almost contact
metric manifold and is denoted by (M2n+1, ϕ, ξ, η, g) or simply M2n+1. Then
from (4) and (5) it can be easily deduced that

g(ϕX, Y ) = −g(X,ϕY ), g(X, ξ) = η(X).

The fundamental 2-form ω associate with the almost contact metric structure
M2n+1 is defined by ω(X,Y ) = g(X,ϕY ) for any vector fields X and Y .

An almost contact metric manifold M2n+1 is said to be an almost cosym-
plectic manifold [3, 8] if both η and ω are closed, that is,

dη = 0, dω = 0.

A normal almost cosymplectic manifold is a cosymplectic manifold and char-
acterized, through Levi-Civita connection by (∇Xϕ)Y = 0, or equivalently,
∇ω = 0.



884 PRAKASHA, DEVARAJA, AMRUTHALAKSHMI, AND VENKATESHA

Let M2n+1 be an almost cosymplectic manifold. We define the operators
h and h′, h := 1

2Lξϕ and h′ := h · ϕ where Lξ is Lie-derivative along ξ. The
(1, 1)-type tensor fields h and h′ are symmetric and satisfy:

hξ = h′ξ = 0, tr(h) = tr(h′) = 0, h · ϕ = −ϕ · h,(6)

∇ξϕ = 0, ∇ξ = h′, divξ = 0,(7)

S(ξ, ξ) + ||h||2 = 0.(8)

Here tr and div denote the trace and divergence operators with respect to the
metric g, respectively. The Ricci tensor S is defined by S(X,Y ) = tr{Z →
R(Z,X)Y }, and the Ricci operator Q is defined by g(QX,Y ) = S(X,Y ). If,
in addition, we put l = R(·, ξ)ξ, then we also have

(9) ϕlϕ− l = 2h2,

where the Riemannian curvature tensor R is defined by R(X,Y )Z = ∇X∇Y Z−
∇Y ∇XZ −∇[X,Y ].

On an almost cosymplectic manifold M2n+1, using the condition h · ϕ =
−ϕ ·h, we obtain (£ξg)(X,Y ) = 2g(h′X,Y ). This means that the Reeb vector
field is Killing if and only if the (1, 1)-type tensor field h vanishes.

In addition, an almost cosymplectic manifold M2n+1 is said to be a (κ, µ)-
almost cosymplectic manifold [7] if the characteristic vector field ξ belongs to
(κ, µ)-nullity distribution, i.e.,

(10) R(X,Y )ξ = κ (η(Y )X − η(X)Y ) + µ (η(Y )hX − η(X)hY )

for any vector fields X and Y , where κ, µ are smooth functions on M2n+1

and h is the (1, 1)-tensor field defined by 2h := £ξϕ. Using (10) we have
l = −κϕ2 + µh, and taking this into (9) gives that

(11) h2 = κϕ2.

By (11), we find easily that κ ≤ 0 and κ = 0 if and only if M2n+1 is a cosym-
plectic manifold, thus in the following we always suppose κ < 0. Moreover, if
µ = 0, then M is called as an N(κ)-almost cosymplectic manifold (see Dacko
[4]) and in such a case we have the following:

Theorem 2.1 ([4, Theorem 4]). An N(κ)-almost cosymplectic manifold for
some κ < 0 is locally isomorphic to a solvable non-nilpotent Lie group Gρ

endowed with the almost cosymplectic structure as follows:

ϕE0 = 0, ϕEi = En+i, ϕEn+i = −Ei,

ξ = E0, g(Ei, Ej) = δij , η(·) = g(·, ξ),

where {Ei}2n+1
i=1 is the basis of Lie algebra of Gρ and ρ =

√
−κ.

Further, on a (κ, µ)-almost cosymplectic manifold M2n+1 of dimension
greater than 3 with κ < 0 the Ricci operator is given by: [18]

(12) Q = µh+ 2nκη ⊗ ξ,
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where κ is a non-zero constant and µ is a smooth function satisfying dµ∧η = 0.
It follows from (12) that

(13) S(ξ, ξ) = 2nκ.

If κ and µ are constants, then the relations (12) and (13) are still valid on
M2n+1 of greater than or equal to 3 (see Endo [7]).

Now, we state the relations held on every (2n+1)-dimensional (κ, µ)-almost
cosymplectic manifold M2n+1 (see Proposition 9 of [13] for the case α = 0 and
ν = 0) which will be used in next sections:

(∇ξh)X = µh′XY,(14)

(∇Xϕ)Y = g(hX, Y )ξ − η(Y )hX,(15)

(∇Xh)Y − (∇Y h)X = κ{2g(ϕX, Y )ξ − η(X)ϕY + η(Y )ϕX}(16)

+ µ{η(X)h′Y − η(Y )h′X},
(∇Xh′)Y − (∇Y h

′)X = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }(17)

for any vector fields X and Y .

3. Riemann solitons on (κ, µ)-almost cosymplectic manifolds

In this section, we consider a Riemann soliton (g, V ) on (κ, µ)-almost cosym-
plectic manifold M2n+1 with κ < 0 and first we prove the following:

Lemma 3.1. Let M2n+1 be a (κ, µ)-almost cosymplectic manifold with κ (< 0)
and µ as constants. If (g, V ) is a Riemann soliton, then

(18) µ2 = λ(2n− 1) + κ(4n− 1).

Proof. By using the definition of Kulkarni-Nomizu product in the Riemann
soliton equation (1), it follows that

2R(X,Y, U,W ) + 2λ{g(X,W )g(Y, U)− g(X,U)g(Y,W )}(19)

+ {g(X,W )(£V g)(Y,U) + g(Y,U)(£V g)(X,W )

− g(X,W )(£V g)(Y,W )− g(Y,W )(£V g)(X,U)} = 0.

Contracting the preceding equation over X and W yields

(20) (£V g)(Y,U) = − 2

2n− 1
{(2nλ+ divV )g(Y, U) + S(Y, U)}.

Differentiating (20) along X gives

(21) (∇X£V g)(Y,Z) = − 2

2n− 1
{X(divV )g(Y, Z) + (∇XS)(Y,Z)}.

Contracting (20) and making use of (12) yields

(22) divV = −1

2
{λ(2n+ 1) + κ}.
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Fetching (22) in (21) we get

(23) (∇X£V g)(Y, Z) = − 2

2n− 1
(∇XS)(Y,Z).

We can easily deduce that

(24) (∇X£V g)(Y,Z) = g((£V ∇)(X,Y ), Z) + g((£V ∇)(X,Z), Y ),

with the help of the following identity [19]:

(£V ∇Xg −∇X£V g −∇[V,X]g)(Y,Z)

= − g((£V ∇)(X,Y ), Z)− g((£V ∇)(X,Z), Y ).

Moreover, by virtue of (24) we derive

g((£V ∇)(X,Y ), Z)(25)

=
1

2
(∇X£V g)(Y,Z) +

1

2
(∇Y £V g)(Z,X)− 1

2
(∇Z£V g)(X,Y ).

Using (23) in (25) we get

g((£V ∇)(X,Y ), Z)(26)

= − 1

2n− 1
{(∇XS)(Y,Z) + (∇Y S)(Z,X)− (∇ZS)(X,Y )}.

In terms of Ricci tensor, (12) can be equivalently written as

(27) S(X,Y ) = µg(hX, Y ) + 2nκη(X)η(Y ).

Taking covariant derivative to (27) and recalling (7) leads to

(28) (∇ZS)(X,Y ) = µg((∇Zh)X,Y )+2nκ{g(X,h′Z)η(Y )+g(Y, h′Z)η(X)}.

Plugging (28) in (26) yields

g((£V ∇)(X,Y ), Z)(29)

=
µ

2n− 1
{g((∇Zh)X − (∇Xh)Z, Y )− g((∇Y h)Z,X)}

− 4nκ

2n− 1
{g(h′X,Y )η(Z)}.

Now, by recalling (16) we find that

(X,Y )(30)

=
µ

2n− 1

[
− κ{2η(Y )ϕX + η(X)ϕY + g(ϕX, Y )ξ}

− µ{η(X)h′Y − g(h′X,Y )ξ} − (∇Y h)X
]
− 4nκ

2n− 1
g(h′X,Y )ξ.

Setting Y = ξ in (30) deduces to

(31) (£V ∇)(X, ξ) =
µ

2n− 1
{−2κϕX − µh′X}.
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Now, differentiating (31) along Y and using (17) and (15) we obtain

(∇Y £V ∇)(X, ξ) + (£V ∇)(X,h′Y )

= − 2µκ

2n− 1
{g(hY,X)ξ − η(X)hY } − µ2

2n− 1
(∇Y h

′)X.

Substituting this in the well known identity

(32) (£V R)(X,Y )Z = (∇X£V ∇)(Y,Z)− (∇Y £V ∇)(X,Z),

we have

(£V R)(X,Y )ξ =
2µκ

2n− 1
{η(Y )hX − η(X)hY }(33)

+
µ2

2n− 1
{(∇Y h

′)X − (∇Xh′)Y }

+ (£V ∇)(X,h′Y )− (£V ∇)(Y, h′X).

Now, plugging Y = ξ in (33) and making use of the last relation, (6), (17) and
(31) we find

(34) (£V R)(X, ξ)ξ =
1

2n− 1
{4κµhX + 2κµ2ϕ2X − µ3hX}.

Now contracting (34) with respect to X and using the second relation of (6)
with the fact that trϕ2 = −2n we have

(£V S)(ξ, ξ) =
1

2n− 1
{2κµ2(−2n)}(35)

= − 4nκµ2

2n− 1
.

From (13), we find (£V S)(ξ, ξ) = −4nκη(£V ξ). Taking Y = U = ξ in (20)
gives η(£V ξ) =

1
2n−1{(2nλ+ divV ) + 2nκ}. Thus, we have

(36) (£V S)(ξ, ξ) = − 4nκ

2n− 1
{(2nλ+ divV ) + 2nκ}.

By virtue of (35), (36) and (22) we get (18). This completes the proof. □

Theorem 3.2. Let (M2n+1, g) be a (κ, µ)-almost cosymplectic manifold with
κ (< 0) and µ as constants. If g is a Riemann soliton, then the soliton is
expanding with λ = κ

2n−1 (4n − 1) and M2n+1 is locally isometric to the above
Lie group Gρ.

Proof. Taking Y = ξ in (10) gives

R(X, ξ)ξ = κ{X − η(X)ξ}+ µhX.

Now taking Lie-derivative to the above equation along V gives

(£V R)(X, ξ)ξ +R(X,£V ξ)ξ +R(X, ξ)£V ξ(37)

= − κ{(£V η)(X)ξ + η(X)£V ξ}+ µ(£V h)X.
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Since η(X) = g(X, ξ), we have

(£V η)(X) = g(£V ξ,X)− 2

2n− 1
{(2nλ+ divV ) + 2nκ}η(X).

Substituting this in (37) and using (10) we get

(£V R)(X, ξ)ξ

= − 2κη(£V ξ)X − 2µη(£V ξ)hX + µη(X)h£V ξ + µg(hX,£V ξ)ξ

+
2κ

2n− 1
{(2nλ+ divV ) + 2nκ}η(X)ξ + µ(£V h)X.

Since η(£V ξ) =
1

2n−1{(2nλ+ divV ) + 2nκ} we have

(£V R)(X, ξ)ξ =
2κ

2n− 1
{2nλ+ divV + 2nκ}(−X + η(X)ξ)(38)

− 2µ

2n− 1
(2nλ+ divV + 2nκ)hX

+ µ{η(X)h£V ξ + g(hX,£V ξ)ξ + (£V h)X}.

Comparing (38) with (34) and using (18) we have

(39)
4κµhX

2n− 1
= µ{η(X)h£V ξ + g(hX,£V ξ)ξ + (£V h)X}.

Now replacing X by hX in (39) gives one equation and operating (39) by h
gives another equation. Adding the obtained two equations gives

8κµh2X

2n− 1
(40)

= κµ{−η(X)£V ξ − g(£V ξ,X)ξ +
2

2n− 1
(2nλ+ divV + 2nκ)η(X)ξ}

+ µ{(£V h)hX + h(£V h)X}.

From (11), we have

h2X = κ{−X + η(X)ξ}.
Taking Lie-derivative to this gives

(£V h)hX + h(£V h)X

= κ{g(£V ξ,X)ξ − 2

2n− 1
(2nλ+ divV + 2nκ)η(X)ξ + η(X)£V ξ}.

Substituting the above equation in (40) gives

8µκh2X = 0.

Tracing it gives 8µκ||h2|| = 0. But, from (8) and (13), we have

8µκ(−2nκ) = 0.

Since κ < 0, we have µ = 0. Thus from (18) we have

λ = − κ

2n− 1
(4n− 1).
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Thus λ > 0 and so expanding and the proof finishes by employing Theorem 2.1.
□

4. Gradient almost Riemann solitons on (κ, µ)-almost cosymplectic
manifolds

Suppose that in a (κ, µ)-almost cosymplectic manifold M , the metric g ad-
mits a gradient almost Riemann soliton. Then the contraction of soliton equa-
tion defined by (3) with the potential function u can be exhibited as

(41) ∇Y Du = − 1

2n− 1
QY − 1

2n− 1
(2nλ+∆u)Y,

where D is the gradient operator of g on M , and ∆u = divDu, and ∆ is the
Laplacian operator. By straightforward computations, using the well known
expression of the curvature tensor:

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[x,Y ]Z

and the repeated use of equation (41) gives

R(X,Y )Du =
1

2n− 1
{(∇Y Q)X − (∇XQ)Y }(42)

+
1

2n− 1
{Y (2nλ+∆u)X −X(2nλ+∆u)Y }.

Applying equation (12) in (42) gives that

R(X,Y )Du

=
1

2n− 1
{µ((∇Y h)X − (∇Xh)Y ) + 2nκ(η(X)h′Y − η(Y )h′X)

+ Y (µ)hX −X(µ)hY }

+
1

2n− 1
{Y (2nλ+∆u)X −X(2nλ+∆u)Y }.

Using (16) in the above equation, we obtain

(2n− 1)R(X,Y )Du(43)

= κµ(η(X)ϕY − η(Y )ϕX + 2g(X,ϕY )ξ)

+ (2nκ− µ2)(η(X)h′Y − η(Y )h′X)

+ {Y (µ)hX −X(µ)hY }+ {Y (2nλ+∆u)X −X(2nλ+∆u)Y }.
Taking inner product of the previous equation with ξ we obtain

(2n− 1)g(R(X,Y )Du, ξ)(44)

= 2κµg(X,ϕY ) + {Y (2nλ+∆u)η(X)−X(2nλ+∆u)η(Y )}.
From (10), we have

g(R(X,Y )Du, ξ)(45)

= κ{(Y u)η(X))− (Xu)η(Y )}+ µ{g(hY,Du)η(X)− g(hX,Du)η(Y )}.
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Replacing X with ξ in (44) and (45) and then comparing with other yields that

(46)
1

2n− 1
D(2nλ+∆u) = κ{Du− (ξu)ξ}+ µhDu+

1

2n− 1
ξ(2nλ+∆u)ξ.

Contracting (43) over X, we get

S(Y,Du) =
2n

2n− 1
Y (2nλ+∆u),

where we have used dµ ∧ η = 0. Making use of (12) in the foregoing equation
gives that

(47)
2n

2n− 1
Y (2nλ+∆u) = µhDu+ 2nκξ(u)ξ.

In the contrast of above equation with (46) we obtain

(48) 2nκ(Du− 2ξ(u)ξ) + (2n− 1)µhDu+
2n

2n− 1
ξ(2nλ+∆u)ξ = 0.

Taking inner product of (47) with ξ we get

(49) κξ(u) =
1

2n− 1
ξ(2nλ+∆u).

Using (49) in (48) we have

(50) 2nκ{−Du+ ξ(u)ξ} = (2n− 1)µhDu.

Moreover, setting X = ϕX and Y = ϕY in the equation (44), and noting
that g(R(ϕX, ϕY )Du, ξ) = 0 (it follows from (10)) and hϕ = ϕh we have
2κµg(ϕX, Y ) = 0. Replacing X by ϕX gives

2κµg(ϕ2X,Y ) = 0.

Taking into the account of tr(ϕ2) = −2n, the contraction of foregoing equation
with respect to X and Y gives that 2κµ = 0. Since κ < 0, we have µ = 0. So
the equation (50) gives

(51) Du− ξ(u)ξ = 0.

Taking covariant differentiation of (51) along an arbitrary vector field X on
M2n+1 together with (4), (7) entails that

∇XDu = X(ξ(u))ξ + ξ(u)h′X.

Comparing the value of QX from relation (12) and the last equation, we com-
pute

(2nλ+∆u)X + (2n− 1)X(ξ(u))ξ + (2n− 1)ξ(u)h′X + 2nκη(X)ξ = 0.

Tracing this over X we have

(52) (2n+ 1)(2nλ+∆u)X + (2n− 1)ξ(ξ(u)) + 2nκ = 0.

Substituting Y by ξ in (41) and then taking scalar product with ξ yields (2n−
1)ξ(ξ(u)) = −2nκ− (2nλ+∆u), which together with (52) gives

(53) 2nλ+∆u = 0.
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Making use of (53) in (44) and taking into fact that µ = 0 we obtain

(54) g(R(X,Y )Du, ξ) = 0.

On the other hand, it follows from (10) that

(55) g(R(X,Y )Du, ξ) = κ(η(Y )X(u)− η(X)Y (u)).

In view of κ < 0, from (54) and (55) we have

(56) η(Y )X(u)− η(X)Y (u) = 0.

In view of µ = 0, we obtain from (50) that ξ(u) = 0. Putting X = ξ in the
above relation and using ξ(u) = 0 we obtain that u is constant. From relation
(41) and (53) we obtain Q = 0. It gives κ = 0. But, this contradicts the
hypothesis that κ < 0. Thus, we arrive at the following:

Theorem 4.1. There exist no gradient almost Riemann soliton on a (κ, µ)-
almost cosymplectic manifold of dimension greater than 3 with κ < 0.

As we pointed out earlier, if κ and µ are constants then (12) is still valid on
M2n+1 of dimension ≥ 3. Thus, Theorem 4.1 implies the following:

Corollary 4.2. There exist no gradient almost Riemann soliton on a (κ, µ)-
almost cosymplectic manifold with κ (< 0) and µ as constants.
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