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Abstract. The goal of this paper is to characterize a class of almost Kenmotsu manifolds

admitting ∗-conformal Ricci solitons. It is shown that if a (2n + 1)-dimensional (k, µ)′-

almost Kenmotsu manifold M admits ∗-conformal Ricci soliton, then the manifold M is

∗-Ricci flat and locally isometric to H
n+1(−4) × R

n. The result is also verified by an

example.

1. Introduction

In 1959, Tachibana [17] introduced the notion of ∗-Ricci tensors on almost
Hermitian manifolds. Later in [13], Hamada defined ∗-Ricci tensors of real hyper-
surfaces in non-flat complex spaces by

S∗(X,Y ) = g(Q∗X,Y ) =
1

2
(trace{φ ◦R(X,φY )})(1.1)

for any vector fields X, Y on M , where Q∗ is the (1, 1) ∗-Ricci operator. The
∗-scalar curvature is denoted by r∗ and is defined by r∗ = trace(Q∗). An almost
contact metric manifold M is called ∗-Ricci flat if the ∗-Ricci tensor S∗ vanishes
identically.

The concept of conformal Ricci flow was develpoed by Fischer [12] as a variation
of the classical Ricci flow equation. The conformal Ricci flow on a smooth closed
connected oriented n-manifold M is defined by the equation

∂g

∂t
+ 2(S +

g

n
) = −pg and r = −1,

where p is a time dependent non-dynamical scalar field, S denotes the Ricci tensor

* Corresponding Author.
Received October 12, 2020; revised October 1, 2021; accepted October 7, 2021.
2020 Mathematics Subject Classification: Primary 53D15; Secondary 53A30, 35Q51.
Key words and phrases: Almost Kenmotsu manifolds, Conformal Ricci soliton, ∗-
Conformal Ricci soliton.

781



782 P. Majhi and D. Dey

and r is the scalar curvature of the manifold.

The concept of a conformal Ricci soliton was introduced by Basu and Bhat-
tacharyya [1] on a (2n+ 1)-dimensional Kenmotsu manifold as

£V g + 2S = [2λ− (p+
2

2n+ 1
)]g,

where λ is a constant and £V g denotes the Lie derivative of g along the vector field
V . This notion was studied by Dutta et al. [11], Nagaraja and Venu [15], Dey and
Majhi [9] and many others.

Over the last decade, geometers and mathematical physicists have developed
several notions related to the ∗-Ricci tensor. In 2014, the notion of a ∗-Ricci soliton
([14]) was introduced. Later in 2019, the notion of a ∗-critical point equation [7]
was introduced and further studied in [8]. In this paper, we study the notion of
∗-conformal Ricci soliton defined as follows in [6].

Definition 1.1. An almost contact metric manifold (M, g) of dimension (2n+1) ≥
3 is said to admit ∗-conformal Ricci soliton (g, V, λ) if

£V g + 2S∗ = [2λ− (p+
2

2n+ 1
)]g,(1.2)

where λ is a constant. The ∗-conformal Ricci soliton is expanding, steady or shrink-
ing according as λ is negative, zero or positive.

In [9], the authors proved that if the metric of a (2n + 1)-dimensional (k, µ)′-
almost Kenmotsu manifold M admits a conformal Ricci soliton, then M is locally
isometric to H

n+1(−4)× R
n. Thus a natural question is the following.

Question. Is the above result is true for a (2n + 1)-dimensional (k, µ)′-almost
Kenmotsu manifold admitting ∗-conformal Ricci soliton?

We will answer this question affirmatively. Also, we get some additional results
associated with the ∗-Ricci tensor and the vector field V .

The paper is organized as follows: In Section 2, we give some basic properties of
(k, µ)′-almost Kenmotsu manifolds. Section 3 deals with (k, µ)′-almost Kenmotsu
manifolds admitting ∗-conformal Ricci soliton. In the final section, the result is
verified by an example.

2. (k, µ)′-almost Kenmotsu Manifolds

An odd dimensional differentiable manifold M is said to have an almost contact
structure, if it admits a (1, 1) tensor field φ, a characteristic vector field ξ and a
1-form η satisfying ([2], [3]),

(2.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1,
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where I denote the identity endomorphism. Here also φξ = 0 and η ◦ φ = 0; both
can be derived from (2.1) easily. If a manifold M with an almost contact structure
admits a Riemannian metric g such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X , Y on M , then M is said to be an almost contact metric
manifold. The fundamental 2-form Φ of an almost contact metric manifold is defined
by Φ(X,Y ) = g(X,φY ) for any X , Y on M . Almost contact metric manifolds such
that η is closed and dΦ = 2η ∧Φ are called almost Kenmotsu manifolds ([10], [16]).

Let us denote by D the distribution orthogonal to ξ. It is defined by D =
Ker(η) = Im(φ). In an almost Kenmotsu manifold, since η is closed, D is an
integrable distribution.
Let M be a (2n + 1)-dimensional almost Kenmotsu manifold. We denote by h =
1
2£ξφ and l = R(·, ξ)ξ on M . The tensor fields l and h are symmetric operators
and satisfy the following relations [16]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0,(2.2)

∇Xξ = X − η(X)ξ − φhX(⇒ ∇ξξ = 0),(2.3)

(2.4) φlφ− l = 2(h2 − φ2),

(2.5) R(X,Y )ξ = η(X)(Y − φhY )− η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y,

for any vector fields X,Y . The (1, 1)-type symmetric tensor field h′ = h ◦ φ is
anti-commuting with φ and h′ξ = 0. Also it is clear that ([10], [18])

h = 0 ⇔ h′ = 0, h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2).(2.6)

In [10], Dileo and Pastore introduced the notion of (k, µ)′-nullity distribution, on
an almost (2n+ 1)-dimensional Kenmotsu manifold (M,φ, ξ, η, g), which is defined
for any p ∈ M and k, µ ∈ R as follows:

Np(k, µ)
′ = {Z ∈ Tp(M) : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]

+µ[g(Y, Z)h′X − g(X,Z)h′Y ]}.(2.7)

The (k, µ)′-nullity distribution is called generalized (k, µ)′-nullity distribution when
one allows k, µ to be smooth functions.
Let X ∈ D be the eigenvector of h′ corresponding to the eigenvalue α. Then
from (2.6) it is clear that α2 = −(k + 1), a constant. Therefore k ≤ −1 and
α = ±

√
−k − 1. We denote by [α]′ and [−α]′ the corresponding eigenspaces related

to the non-zero eigenvalue α and −α of h′, respectively. In [10], it is proved that in a
(2n+1) dimensional (k, µ)′-almost Kenmotsu manifoldM with h′ 6= 0, k < −1, µ =
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−2 and Spec(h′) = {0, α,−α}, with 0 as simple eigenvalue and α =
√
−k − 1. From

(2.7), we have

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ],(2.8)

where k, µ ∈ R. Also we get from (2.8)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X ] + µ[g(h′X,Y )ξ − η(Y )h′X ].(2.9)

Using (2.3), we have

(∇Xη)Y = g(X,Y )− η(X)η(Y ) + g(h′X,Y ).(2.10)

For further details on (k, µ)′-almost Kenmotsu manifolds, we refer the reader to the
references ([5], [10], [16]).

3. ∗-Conformal Ricci Soliton

In this section, we study the notion of ∗-conformal Ricci solitons in the frame-
work of (k, µ)′-almost Kenmotsu manifolds. To prove the main theorem, we need
the following lemmas:

Lemma 3.1. ([4]) On a (k, µ)′-almost Kenmotsu manifold with k < −1, the ∗-Ricci
tensor is given by

S∗(X,Y ) = −(k + 2)(g(X,Y )− η(X)η(Y ))(3.1)

for any vector fields X, Y .

Lemma 3.2. ([9]) In a (k, µ)′-almost Kenmotsu manifold M2n+1, (£Xh′)Y = 0
for any X, Y ∈ [α]′ or X, Y ∈ [−α]′, where Spec(h′) = {0, α,−α}.

Lemma 3.3. On a (2n+1)-dimensional (k, µ)′-almost Kenmotsu manifold M , the

∗-Ricci tensor S∗ satisfies the following relation:

(∇ZS
∗)(X,Y )− (∇XS∗)(Y, Z)− (∇Y S

∗)(X,Z)

= −2(k + 2)η(Z)[g(X,Y )− η(X)η(Y ) + g(h′X,Y )]

for any vector fields X, Y and Z on M .

Proof. Differentiating (3.1) covariantly along any vector field Z, we have

(3.2) ∇ZS
∗(X,Y ) = −(k + 2)[∇Zg(X,Y )− (∇Zη(X))η(Y )− (∇Zη(Y ))η(X)].

Now,

(∇ZS
∗)(X,Y ) = ∇ZS

∗(X,Y )− S∗(∇ZX,Y )− S∗(X,∇ZY ).
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Using (3.1) and (3.2) in the foregoing equation, we obtain

(∇ZS
∗)(X,Y ) = −(k + 2)[∇Zg(X,Y )− (∇Zη(X))η(Y )− (∇Zη(Y ))η(X)]

+(k + 2)[g(∇ZX,Y )− η(∇ZX)η(Y )]

+(k + 2)[g(X,∇ZY )− η(∇ZY )η(X)]

= (k + 2)[((∇Zη)X)η(Y ) + ((∇Zη)Y )η(X)].(3.3)

Again, using (2.10) in (3.3), we infer that

(∇ZS
∗)(X,Y ) = (k + 2)[g(X,Z)η(Y ) + g(Y, Z)η(X)− 2η(X)η(Y )η(Z)

+g(h′Z,X)η(Y ) + g(h′Z, Y )η(X)].(3.4)

In a similar manner, we get

(∇XS∗)(Y, Z) = (k + 2)[g(Y,X)η(Z) + g(Z,X)η(Y )− 2η(Y )η(Z)η(X)

+g(h′X,Y )η(Z) + g(h′X,Z)η(Y )].(3.5)

(∇Y S)
∗(Z,X) = (k + 2)[g(Z, Y )η(X) + g(X,Y )η(Z)− 2η(Z)η(X)η(Y )

+g(h′Y, Z)η(X) + g(h′Y,X)η(Z)].(3.6)

Now, using (3.4)-(3.6), we compute

(∇ZS
∗)(X,Y )− (∇XS∗)(Y, Z)− (∇Y S

∗)(X,Z)

= −2(k + 2)η(Z)[g(X,Y )− η(X)η(Y ) + g(h′X,Y )].

This completes the proof.

We are now ready to prove our main theorem which is stated below.

Theorem 3.4. Let M be a (2n+1)-dimensional (k, µ)′-almost Kenmotsu manifold

with h′ 6= 0 admitting ∗-conformal Ricci soliton (g, V, λ). Then, the manifold M is

∗-Ricci flat and locally isometric to H
n+1(−4) × R

n, provided that λ 6= p
2 + 1

2n+1 .

Proof. From (1.2), we have

(£V g)(X,Y ) + 2S∗(X,Y ) = [2λ− (p+
2

2n+ 1
)]g(X,Y ).(3.7)

Differentiating the above equation covariantly along any vector field Z, we get

(∇Z£V g)(X,Y ) = −2(∇ZS
∗)(X,Y ).(3.8)

It is well known that ([19], p-23)

(£V ∇Xg−∇X£V g−∇[V,X]g)(Y, Z) = −g((£V ∇)(X,Y ), Z)−g((£V ∇)(X,Z), Y ).
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Since g is parallel with respect to the Levi-Civita connection ∇, then the above
relation becomes

(∇X£V g)(Y, Z) = g((£V ∇)(X,Y ), Z) + g((£V ∇)(X,Z), Y ).(3.9)

Since £V ∇ is symmetric, then it follows from (3.9) that

g((£V ∇)(X,Y ), Z) =
1

2
(∇X£V g)(Y, Z) +

1

2
(∇Y £V g)(X,Z)

−1

2
(∇Z£V g)(X,Y ).(3.10)

Using (3.8) in (3.10) we have

(3.11) g((£V ∇)(X,Y ), Z) = (∇ZS
∗)(X,Y )− (∇XS∗)(Y, Z)− (∇Y S

∗)(X,Z).

Now using Lemma 3.3 in (3.11) we have

g((£V ∇)(X,Y ), Z) = −2(k + 2)[g(X,Y )− η(X)η(Y ) + g(h′X,Y )]η(Z),

which implies

(£V ∇)(X,Y ) = −2(k + 2)[g(X,Y )− η(X)η(Y ) + g(h′X,Y )]ξ.(3.12)

Substituting Y = ξ in (3.12) we get (£V ∇)(X, ξ) = 0. From which we obtain
∇Y (£V ∇)(X, ξ) = 0. This gives

(∇Y £V ∇)(X, ξ) + (£V ∇)(∇Y X, ξ) + (£V ∇)(X,∇Y ξ) = 0.(3.13)

Using (£V ∇)(X, ξ) = 0, (3.12) and (2.3) in (3.13), we infer that

(∇Y £V ∇)(X, ξ) = 2(k + 2)[g(X,Y )− η(X)η(Y ) + g(X,h′Y ) + g(h′X,Y )

+g(h′2X,Y )]ξ.(3.14)

It is known that ([19], p.23)

(£V R)(X,Y )Z = (∇X£V ∇)(Y, Z)− (∇Y £V ∇)(X,Z),

Using the equation (3.14) in the above formula, we obtain

(£V R)(X, ξ)ξ = (∇X£V ∇)(ξ, ξ) − (∇ξ£V ∇)(X, ξ) = 0.(3.15)

Now, substituting Y = ξ in (3.7) and applying (3.1), we have

(£V g)(X, ξ) = [2λ− (p+
2

2n+ 1
)]η(X),(3.16)

which implies

(£V η)X − g(X,£V ξ)− [2λ− (p+
2

2n+ 1
)]η(X) = 0.(3.17)
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From (3.17), after putting X = ξ we can easily obtain that

η(£V ξ) = −[λ− (
p

2
+

1

2n+ 1
)].(3.18)

From (2.8), we have

R(X, ξ)ξ = k(X − η(X)ξ)− 2h′X.(3.19)

Now, using (3.17)-(3.19) and (2.8)-(2.9) we obtain

(£V R)(X, ξ)ξ = £V R(X, ξ)ξ −R(£V X, ξ)ξ −R(X,£V ξ)ξ −R(X, ξ)£V ξ

= k[2λ− (p+
2

2n+ 1
)](X − η(X)ξ)− 2(£V h

′)X

−2[2λ− (p+
2

2n+ 1
)]h′X − 2η(X)h′(£V ξ)

−2g(h′X,£V ξ)ξ.(3.20)

Equating (3.15) and (3.20) and then taking inner product with Y yields

k[2λ− (p+
2

2n+ 1
)](g(X,Y )− η(X)η(Y ))

−2g((£V h
′)X,Y )− 2[2λ− (p+

2

2n+ 1
)]g(h′X,Y )

−2η(X)g(h′(£V ξ), Y )− 2g(h′X,£V ξ)η(Y ) = 0.

Replacing X by φX and Y by φY in the above equation, we infer that

k[2λ− (p+
2

2n+ 1
)]g(φX, φY )− 2g((£V h

′)φX, φY )

−2[2λ− (p+
2

2n+ 1
)]g(h′φX, φY ) = 0.(3.21)

Let X ∈ [−α]′ and V ∈ [α]′, then φX ∈ [α]′. Then from (3.21), we have

(k − 2α)[2λ− (p+
2

2n+ 1
)]g(φX, Y )− 2g((£V h

′)φX, Y ) = 0.(3.22)

Since, V, φX ∈ [α]′, using Lemma 3.2 we have (£V h
′)φX = 0. Therefore, equation

(3.22) reduces to

(k − 2α)[2λ− (p+
2

2n+ 1
)]g(φX, Y ) = 0,

which implies k = 2α, since by hypothesis λ 6= (p2 + 1
2n+1 ).

If k = 2α, then from α2 = −(k + 1) we get α = −1, and hence k = −2. Therefore,
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from Lemma 3.1, we have S∗ = 0. Thus the manifold is ∗-Ricci flat.
Again from Proposition 4.2 of [10], we have

R(Xα, Yα)Zα = 0

and

R(X−α, Y−α)Z−α = −4[g(Y−α, Z−α)X−α − g(X−α, Z−α)Y−α],

for any Xα, Yα, Zα ∈ [α]′ and X−α, Y−α, Z−α ∈ [−α]′. Also noticing µ = −2 it
follows from Proposition 4.3 of [10] that K(X, ξ) = −4 for any X ∈ [−α]′ and
K(X, ξ) = 0 for any X ∈ [α]′. Again from Proposition 4.3 of [10] we see that
K(X,Y ) = −4 for any X,Y ∈ [−α]′ and K(X,Y ) = 0 for any X,Y ∈ [α]′. As is
shown in [10] that the distribution [ξ]⊕[−α]′ is integrable with totally geodesic leaves
and the distribution [α]′ is integrable with totally umbilical leaves byH = −(1+α)ξ,
where H is the mean curvature tensor field for the leaves of [α]′ immersed in M2n+1.
Here α = −1, then the two orthogonal distributions [ξ] ⊕ [−α]′ and [α]′ are both
integrable with totally geodesic leaves immersed in M2n+1. Then we can say that
M2n+1 is locally isometric to H

n+1(−4) × R
n.

Remark 3.5. If λ = (p2 +
1

2n+1 ), then from (1.2), we can say that the ∗-conformal
Ricci soliton reduces to a steady ∗-Ricci soliton. To discuss this situation we need
the following well known definition.

Definition 3.6. On an almost contact metric manifold M , a vector field V is said
to be Killing if £V g = 0 and an infinitesimal contact transformation if £V η = fη

for some smooth function f on M . In particular, if f = 0, then V is said to be
strict infinitesimal contact transformation.

We consider the following two cases.
Case 1: If k 6= −2 and λ = (p2 + 1

2n+1 ), then from (3.17), we have (£V η)X =
g(X,£V ξ). From this we can easily say that V will be an infinitesimal contact
transformation if £V ξ is parallel to ξ, that is, there is a smooth function f on
M such that £V ξ = fξ. But in view of (3.18), we have η(£V ξ) = 0, that is,
g(£V ξ, ξ) = 0, which implies £V ξ and ξ are orthogonal. Hence £V ξ 6= fξ, for any
smooth function f on M , unless f = 0 identically. Then V is an strict infinitesimal
contact transformation if £V ξ = 0.
Case 2: If k = −2 and λ = (p2 + 1

2n+1 ), then from (1.2), we have £V g = 0. Hence
V is a Killing vector field.

4. Example

In [10], Dileo and Pastore give an example of a (2n + 1)-dimensional (k, µ)′-
almost Kenmotsu manifold which is connected but not compact. In [9], the authors
obtained the following expressions for 5-dimensional case, when k = −2:

(£ξg)(ξ, ξ) = (£ξg)(e4, e4) = (£ξg)(e5, e5) = 0
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(£ξg)(e2, e2) = (£ξg)(e3, e3) = 4.

Also k = −2 implies that the manifold is locally isometric to H
3(−4) × R

2 and
S∗ = 0, that is, the manifold is ∗-Ricci flat.
Considering V = ξ and tracing (1.2), we obtain λ = p+2

2 . Hence (g, ξ, p+2
2 ) is a

∗-conformal Ricci soliton on M . This verifies our theorem 3.4.
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Progr. Math., Birkhäuser, Boston, 203(2010).

[4] X. Dai, Y. Zhao and U. C. De, ∗-Ricci soliton on (k, µ)′-almost Kenmotsu

manifolds, Open Math., 17(2019), 874–882.

[5] U. C. De and D. Dey, Pseudo-symmetric structures on almost Kenmotsu man-

ifolds with nullity distributions, Acta Comment. Univ. Tartu. Math., 23(2019),
13–24.

[6] D. Dey, Sasakian 3-metric as a ∗-conformal Ricci soliton represents a Berger

sphere, Bull. Korean Math. Soc., (2021) (Accepted)

[7] D. Dey and P. Majhi, ∗-Critical point equation on N(k)-contact manifolds,

Bull. Transilv. Univ. Braov Ser. III, 12(2019), 275–282.

[8] D. Dey and P. Majhi, ∗-Critical point equation on a class of almost Kenmotsu

manifolds, J. Geom., 111(1)(2020), paper no. 16.

[9] D. Dey and P. Majhi, Almost Kenmotsu mentric as a conformal Ricci soliton,

Conform. Geom. Dyn. 23(2019), 105–116.

[10] G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distribu-

tions, J. Geom., 93(2009), 46–61.

[11] T. Dutta, N. Basu and A. BhattacharyyaConformal Ricci soliton in Lorentzian

α-Sasakian manifolds, Acta Univ. Palack.Olomuc. Fac. Rerum Natur. Math.,
55(2016), 57–70.



790 P. Majhi and D. Dey

[12] A. E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav.,
21(2004), 171–218.

[13] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci ∗-
tensor, Tokyo J. Math., 25(2002), 473–483.

[14] G. Kaimakanois and K. Panagiotidou, ∗-Ricci solitons of real hypersurface in

non-flat comlex space forms, J. Geom. Phys., 86(2014), 408–413.

[15] H. G. Nagaraja and K. Venu, f -Kenmotsu metric as conformal Ricci soliton,

An. Univ. Vest. Timis. Ser. Mat.-Inform., 55(2017), 119–127.

[16] A. M. Pastore and V. Saltarelli, Generalized nullity distribution on almost

Kenmotsu manifolds, Int. Elec. J. Geom., 4(2011), 168–183.

[17] S. Tachibana, On almost-analytic vectors in almost Kaehlerian manifolds, To-
hoku Math. J., 11(1959), 247–265.

[18] Y. Wang and X. Liu, Riemannian semi-symmetric almost Kenmotsu manifolds

and nullity distributions, Ann. Polon. Math., 112(2014), 37–46.

[19] K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, New
York, 1970.


