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ABSTRACT. The goal of this paper is to characterize a class of almost Kenmotsu manifolds
admitting *-conformal Ricci solitons. It is shown that if a (2n + 1)-dimensional (k, p)’-
almost Kenmotsu manifold M admits x-conformal Ricci soliton, then the manifold M is
*-Ricci flat and locally isometric to H™"!(—4) x R™. The result is also verified by an
example.

1. Introduction

In 1959, Tachibana [17] introduced the notion of #*-Ricci tensors on almost
Hermitian manifolds. Later in [13], Hamada defined *-Ricci tensors of real hyper-
surfaces in non-flat complex spaces by

(1.1) S*(X,)Y)=9(Q*X,Y) = %(trace{(bo R(X,9Y)})

for any vector fields X, Y on M, where Q* is the (1,1) x-Ricci operator. The
x-scalar curvature is denoted by r* and is defined by r* = trace(Q*). An almost
contact metric manifold M is called *-Ricci flat if the *-Ricci tensor S* vanishes
identically.

The concept of conformal Ricci flow was develpoed by Fischer [12] as a variation
of the classical Ricci flow equation. The conformal Ricci flow on a smooth closed
connected oriented n-manifold M is defined by the equation

9g

gy _ __
2t +2(S+n)— pg and r 1,

where p is a time dependent non-dynamical scalar field, S denotes the Ricci tensor
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and r is the scalar curvature of the manifold.

The concept of a conformal Ricci soliton was introduced by Basu and Bhat-
tacharyya [1] on a (2n + 1)-dimensional Kenmotsu manifold as

Lyg+28 =2\~ (p+ )9,

2n+1

where A is a constant and £y g denotes the Lie derivative of g along the vector field
V. This notion was studied by Dutta et al. [11], Nagaraja and Venu [15], Dey and
Majhi [9] and many others.

Over the last decade, geometers and mathematical physicists have developed
several notions related to the *-Ricci tensor. In 2014, the notion of a x-Ricci soliton
([14]) was introduced. Later in 2019, the notion of a *-critical point equation [7]
was introduced and further studied in [8]. In this paper, we study the notion of
x-conformal Ricci soliton defined as follows in [6].

Definition 1.1. An almost contact metric manifold (M, g) of dimension (2n+1) >
3 is said to admit *-conformal Ricci soliton (g, V, A) if

(1.2) £yg+25*=2A— (p+ g,

where A is a constant. The *-conformal Ricci soliton is expanding, steady or shrink-
ing according as A is negative, zero or positive.

2n+1

In [9], the authors proved that if the metric of a (2n + 1)-dimensional (k, u)'-
almost Kenmotsu manifold M admits a conformal Ricci soliton, then M is locally
isometric to H"*t1(—4) x R™. Thus a natural question is the following.

Question. Is the above result is true for a (2n + 1)-dimensional (k, u)-almost
Kenmotsu manifold admitting *-conformal Ricci soliton?

We will answer this question affirmatively. Also, we get some additional results
associated with the x-Ricci tensor and the vector field V.

The paper is organized as follows: In Section 2, we give some basic properties of
(k, n)’-almost Kenmotsu manifolds. Section 3 deals with (k, x)’-almost Kenmotsu
manifolds admitting *-conformal Ricci soliton. In the final section, the result is
verified by an example.

2. (k,p)-almost Kenmotsu Manifolds

An odd dimensional differentiable manifold M is said to have an almost contact
structure, if it admits a (1,1) tensor field ¢, a characteristic vector field £ and a
1-form 7 satisfying ([2], [3]),

(2.1) P’ =-I+n®E nE) =1,
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where I denote the identity endomorphism. Here also ¢¢ = 0 and 1 o ¢ = 0; both
can be derived from (2.1) easily. If a manifold M with an almost contact structure
admits a Riemannian metric g such that

9(¢X,9Y) = g(X,Y) —n(X)n(Y),

for any vector fields X, Y on M, then M is said to be an almost contact metric
manifold. The fundamental 2-form ® of an almost contact metric manifold is defined
by ®(X,Y) = g(X, Y ) for any X, Y on M. Almost contact metric manifolds such
that 7 is closed and d® = 2n A ® are called almost Kenmotsu manifolds ([10], [16]).
Let us denote by D the distribution orthogonal to £. It is defined by D =
Ker(n) = Im(¢). In an almost Kenmotsu manifold, since n is closed, D is an
integrable distribution.
Let M be a (2n + 1)-dimensional almost Kenmotsu manifold. We denote by h =
%fg(b and | = R(-,§)§ on M. The tensor fields | and h are symmetric operators
and satisfy the following relations [16]:

(2.2) he =0, 1¢ =0, tr(h) =0, tr(h¢) =0, hd+ ¢h =0,
(2.3) Vx€ =X —n(X)§ — phX (= Vel =0),
(2.4) Plp —1 = 2(h* — ¢%),

(2.5) R(X,Y)E =n(X)(Y = ohY) = n(Y)(X — 6hX) + (Vy¢h) X — (Vxoh)Y,

for any vector fields X,Y. The (1,1)-type symmetric tensor field k' = ho ¢ is
anti-commuting with ¢ and h'¢ = 0. Also it is clear that ([10], [18])

(2.6) h=0<h =0, %= (k+1)¢*(< h? = (k+1)¢?).

In [10], Dileo and Pastore introduced the notion of (k, u)-nullity distribution, on
an almost (2n + 1)-dimensional Kenmotsu manifold (M, ¢, &, 7, g), which is defined
for any p € M and k, u € R as follows:

Ny(k,p) ={Z € T,(M): R(X,Y)Z = klg(Y,2)X — g(X,Z)Y]
(2.7) +ulg(Y, 2)W' X — g(X, Z)h'Y]}.

The (k, p)"-nullity distribution is called generalized (k, p)’-nullity distribution when
one allows k, u to be smooth functions.

Let X € D be the eigenvector of h’' corresponding to the eigenvalue «. Then
from (2.6) it is clear that a® = —(k + 1), a constant. Therefore & < —1 and
a = +v/—k — 1. We denote by [a]" and [—a]’ the corresponding eigenspaces related
to the non-zero eigenvalue o and —a of b/, respectively. In [10], it is proved that in a
(2n+1) dimensional (k, )’-almost Kenmotsu manifold M with b’ #£ 0, k < —1, u =
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—2 and Spec(h’) = {0, o, —a}, with 0 as simple eigenvalue and a = v/—k — 1. From
(2.7), we have
(28)  RX,Y)§=k[(Y)X —n(X)Y] + pn(Y)K'X —n(X)h'Y],
where k, u € R. Also we get from (2.8)
(2.9)  R(§X)Y =k[g(X,Y)¢ = n(Y)X] + plg(h' X, Y)§ — n(Y)h' X].
Using (2.3), we have
(2.10) (Vxn)Y =g(X,Y) = n(X)n(Y) + g(h'X,Y).

For further details on (k, p)’-almost Kenmotsu manifolds, we refer the reader to the
references ([5], [10], [16]).

3. *-Conformal Ricci Soliton

In this section, we study the notion of #-conformal Ricci solitons in the frame-
work of (k, p)’-almost Kenmotsu manifolds. To prove the main theorem, we need
the following lemmas:

Lemma 3.1. ([4]) On a (k, p)’ -almost Kenmotsu manifold with k < —1, the x-Ricci
tensor is given by

(3.1) SHX,Y) = —(k+2)(9(X,Y) = n(X)n(Y))
for any vector fields X, Y.

Lemma 3.2. ([9]) In a (k,p) -almost Kenmotsu manifold M*" 1, (£xh)Y =0
forany X, Y €[] or X, Y € [—a, where Spec(h') = {0, a, —a}.

Lemma 3.3. On a (2n+ 1)-dimensional (k, u)'-almost Kenmotsu manifold M, the
x-Ricci tensor S* satisfies the following relation:

(V28 )(X,Y) = (VxS)Y,Z) — (VyS*)(X, Z)
= =2(k+2)n(2)[g(X,Y) = n(X)n(Y) 4+ g(h' X,Y)]

for any vector fields X, Y and Z on M.

Proof. Differentiating (3.1) covariantly along any vector field Z, we have

(32) VzS'(X,Y) = —(k +2)[V29(X,Y) — (Van(X)n(Y) — (Vzn(¥)n(X)].
Now,

(V28")(X,Y) = VzS*(X,Y) — S*(VX,Y) — §*(X,VY).
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Using (3.1) and (3.2) in the foregoing equation, we obtain

(VzS)X)Y) = —(k+2)[Vz9(X,Y) — (Vzn(X))n(Y) — (Vzn(Y))n(X)]
+(k+2)[g(VzX,Y) = n(VzX)n(Y)]
+(k+2)[9(X,V2Y) = n(V2Y)n(X)]

(3.3) = (k+2)[(Vz2n)X)n(Y) + (Vzn)Y)n(X)].

Again, using (2.10) in (3.3), we infer that

(VzS)(X,Y) = (k+2)[g(X,Z)nY) +g(Y, Z)n(X) = 2n(X)n(Y)n(Z)
(3.4) +9(h'Z, X)n(Y) + g(' Z,Y )n(X)].

In a similar manner, we get

(VxS)(Y,2) = (k+2)[g(Y,X)n(2)+g(Z, X)n(Y) —2n(Y)n(Z)n(X)
(3.5) +9(W' X, Y)(Z) + g(h' X, Z)n(Y)).

(Vy9)"(Z,X) = (k+2)[9(Z,Y)n(X)+g(X,Y)n(Z) = 20(Z)n(X)n(Y)
(3.6) +9(h'Y, Z)n(X) + g(h'Y, X)n(Z)].

Now, using (3.4)-(3.6), we compute

(Vz5)(X,Y) = (VxS)(Y, Z2) = (Vy§7)(X, 2)
= =2(k+2)n(2)[g(X,Y) = n(X)n(Y) + g(V'X,Y)].

This completes the proof. O
We are now ready to prove our main theorem which is stated below.

Theorem 3.4. Let M be a (2n+ 1)-dimensional (k, )’ -almost Kenmotsu manifold
with ' # 0 admitting *-conformal Ricci soliton (g,V,\). Then, the manifold M is
*-Ricci flat and locally isometric to H" "' (—4) x R™, provided that X\ # § +

1
2n+1"°
Proof. From (1.2), we have

(3.7) (Lvg)(X,Y) +25"(X,Y)=[2A - (p+ )Ng(X,Y).

2n+1

Differentiating the above equation covariantly along any vector field Z, we get
(3.8) (V2L£vg)(X.Y) = —2(V25)(X,Y).
It is well known that ([19], p-23)

(£vVxg=VxLvg—Vyx1g)V,Z) = —g(£vV)(X,Y),Z) - g((£vV)(X, 2),Y).
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Since g is parallel with respect to the Levi-Civita connection V, then the above
relation becomes

(39)  (VxLv)(Y.2) = g((£vV)(X.¥), 2) 4 g((£yV)(X, 2),¥).
Since £y'V is symmetric, then it follows from (3.9) that
WEVVIXY).Z) = L(Vxbvg)¥.Z)+ L(Vy Lrg)(X.2)

(3.10) —%(szvg)(X, Y).
Using (3.8) in (3.10) we have
(311) g((£vV)(X,Y),2) = (V28")(X.¥) ~ (Vx SV, 2) ~ (Vy§7)(X, 2).
Now using Lemma 3.3 in (3.11) we have

G((£y V)X Y), 2) = 20k + 2)[g(X, Y) ~ n(Xn(¥) + g(W X,V )l (2),
which implies
(312) (£09)(X,Y) = =20k +2lg(X,¥) ~ n(X)n(¥) + g(W' X, Ve

Substituting ¥ = € in (3.12) we get (£LyV)(X,§) = 0. From which we obtain
Vy (£yV)(X,€) = 0. This gives

(3.13)  (Vy £y V)(X, &) + (£vV)(Vy X, &) + (£vV)(X, Vy¢) = 0.
Using (£vV)(X,€) =0, (3.12) and (2.3) in (3.13), we infer that

(Vy £y V)(X,€) = 2(k+2)[g(X,)Y) = n(X)n(Y) + g(X, h'Y) + g(WX.Y)
(3.14) +g(hW2X,Y)E.

It is known that ([19], p.23)

(£vR)(X,Y)Z = (Vx £y V)(Y, Z) - (Vy £vV)(X, Z),
Using the equation (3.14) in the above formula, we obtain
(315)  (£vR)(X, 98 = (Vx £y V)(€,€) — (VeLyV)(X,€) = 0.

Now, substituting ¥ = ¢ in (3.7) and applying (3.1), we have

(3.16) (£v9)(X,8) = [2A = (0 + 5= (),
which implies
(3.17) (Lyvm)X —g(X, £v) — 22— (p+ )In(X) = 0.

2n+1
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From (3.17), after putting X = £ we can easily obtain that

(3.18) weve) =-i- G+ )l

From (2.8), we have
(3.19) R(X,€)¢ = k(X — n(X)€) — 21’ X.

Now, using (3.17)-(3.19) and (2.8)-(2.9) we obtain

(LvR)(X,§)E¢ = LyvR(X, )~ R(£vX,)E— R(X, £vE)E — R(X, ) L£vE
= KA = (p+ 5= )1 (X)) - 2(£vh)X
22X - (p+ 5 T DI X = 2n(X)H (£vE)
(3.20) —2g(W' X, £vE)E.

Equating (3.15) and (3.20) and then taking inner product with Y yields

k2 — (p+ N(g(X,Y) = n(X)n(Y))

—29((Lvh)X,Y) =222 — (p +

2n+1

ST Dlg(W X, Y)
—2n(X)g(h'(£v€),Y) = 29(W' X, £vEn(Y) = 0.

Replacing X by ¢X and Y by ¢Y in the above equation, we infer that

k[2\ — (p +

—— N9(6X, 8Y) — 29((£vH)pX, pY)

2
(3.21) —22A—(p+ Ng(h'¢X,¢Y) = 0.

2n+1
Let X € [-a] and V € [of’, then ¢X € [a]'. Then from (3.21), we have

(3.22) (k=2a0)2A - (p+ Ng(¢X,Y) = 29((£vh)pX,Y) = 0.

2n+1

Since, V, ¢X € [a]’, using Lemma 3.2 we have (£yh')¢pX = 0. Therefore, equation
(3.22) reduces to

(k —20)[2XA — (p +

96X Y) =0,

which implies & = 2, since by hypothesis A # (§ + ﬁ)

If k = 2a, then from a? = —(k + 1) we get « = —1, and hence k = —2. Therefore,
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from Lemma 3.1, we have S* = 0. Thus the manifold is *-Ricci flat.
Again from Proposition 4.2 of [10], we have

R(Xa,Ya)Z0=0
and
R(X—ou Y—a)Z—a = _4[9(Y—a7 Z—oz)X—oz - g(X—ou Z—oz)y—oz]a

for any X,,Ye,Zo € [@] and X_,,Y_,,Z_, € [—a]. Also noticing p = —2 it
follows from Proposition 4.3 of [10] that K(X,§) = —4 for any X € [—a] and
K(X,§) =0 for any X € [o]. Again from Proposition 4.3 of [10] we see that
K(X,Y)= —4forany X,Y € [—a) and K(X,Y) =0 for any X,Y € [a]. Asis
shown in [10] that the distribution [¢]®[—a]’ is integrable with totally geodesic leaves
and the distribution [«]’ is integrable with totally umbilical leaves by H = —(1+a)¢,
where H is the mean curvature tensor field for the leaves of [a]’ immersed in M?7*1,

Here o = —1, then the two orthogonal distributions [£] & [—a]’ and [a]" are both
integrable with totally geodesic leaves immersed in M?"+!. Then we can say that
M2+ s locally isometric to H" 1 (—4) x R™. O

Remark 3.5. If A = (§ + ﬁ), then from (1.2), we can say that the *-conformal
Ricci soliton reduces to a steady *-Ricci soliton. To discuss this situation we need
the following well known definition.

Definition 3.6. On an almost contact metric manifold M, a vector field V is said
to be Killing if £y g = 0 and an infinitesimal contact transformation if £yn = fn
for some smooth function f on M. In particular, if f = 0, then V is said to be
strict infinitesimal contact transformation.

We consider the following two cases.

Case 1: If k # —2 and A\ = (§ + Tl-i-l)’ then from (3.17), we have (£yn)X =
9(X, £v&). From this we can easily say that V' will be an infinitesimal contact
transformation if £y £ is parallel to £, that is, there is a smooth function f on
M such that £v¢ = f€. But in view of (3.18), we have n(£y¢) = 0, that is,
g(£v&,€) =0, which implies £ ¢ and € are orthogonal. Hence £1¢ # f¢, for any
smooth function f on M, unless f = 0 identically. Then V' is an strict infinitesimal
contact transformation if £y = 0.

Case 2: If k= —2and A = (5§ +
V is a Killing vector field.

—inﬂ), then from (1.2), we have £y g = 0. Hence

4. Example

In [10], Dileo and Pastore give an example of a (2n + 1)-dimensional (k, p)’-
almost Kenmotsu manifold which is connected but not compact. In [9], the authors
obtained the following expressions for 5-dimensional case, when k = —2:

(£69)(§,€) = (£eg)(eq; ea) = (£eg)(es,e5) = 0
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(£eg)(e2,e2) = (£eg)(es,e3) = 4.

Also k = —2 implies that the manifold is locally isometric to H?(—4) x R? and
S* =0, that is, the manifold is *-Ricci flat.

Considering V = ¢ and tracing (1.2), we obtain A\ =
x-conformal Ricci soliton on M. This verifies our theorem 3.4.

+2 42
PT=. Hence (9,&,%7) is a
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