DOI QR코드

DOI QR Code

RIEMANN SOLITONS ON (κ, µ)-ALMOST COSYMPLECTIC MANIFOLDS

  • Prakasha D. Gowda (Department of Studies in Mathematics Davangere University) ;
  • Devaraja M. Naik (Centre for Mathematical Needs Department of Mathematics CHRIST (Deemed to be University)) ;
  • Amruthalakshmi M. Ravindranatha (Department of Studies in Mathematics Davangere University) ;
  • Venkatesha Venkatesha (Department of Mathematics Kuvempu University)
  • Received : 2022.08.17
  • Accepted : 2022.12.22
  • Published : 2023.07.31

Abstract

In this paper, we study almost cosymplectic manifolds with nullity distributions admitting Riemann solitons and gradient almost Riemann solitons. First, we consider Riemann soliton on (κ, µ)-almost cosymplectic manifold M with κ < 0 and we show that the soliton is expanding with ${\lambda}{\frac{\kappa}{2n-1}}(4n - 1)$ and M is locally isometric to the Lie group Gρ. Finally, we prove the non-existence of gradient almost Riemann soliton on a (κ, µ)-almost cosymplectic manifold of dimension greater than 3 with κ < 0.

Keywords

Acknowledgement

The author Amruthalakshmi M. R., is thankful to Department of Science and Technology, Ministry of Science and Technology, Government of India, for providing financial assistance through DST INSPIRE Fellowship (No: DST/INSPIRE Fellowship/[IF 190869]).

References

  1. A. Besse, Einstein Manifolds, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
  2. D. E. Blair, Riemanniaan geometry of contact and symplectic manifolds, Prog. Math., Birkhaauser, Basel 203 (2010).
  3. B. Cappelletti-Montano, A. De Nicola, and A. I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys., 25 (2013), 1343002.
  4. P. Dacko, On almost cosymplectic manifolds with the structure vector field ξ belonging to the k-nullity distribution, Balkan J. Geom. Appl. 5 (2000), no. 2, 47-60.
  5. P. Dacko and Z. Olszak, On almost cosymplectic (κ, µ, ν)-spaces, in PDEs, submanifolds and affine differential geometry, 211-220, Banach Center Publ., 69, Polish Acad. Sci. Inst. Math., Warsaw, 2005. https://doi.org/10.4064/bc69-0-17
  6. M. N. Devaraja, H. A. Kumara, and V. Venkatesha, Riemann soliton within the framework of contact geometry, Quaest. Math. 44 (2021), no. 5, 637-651. https://doi.org/10.2989/16073606.2020.1732495
  7. H. Endo, Non-existence of almost cosymplectic manifolds satisfying a certain condition, Tensor (N.S.) 63 (2002), no. 3, 272-284.
  8. S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. http://projecteuclid.org/euclid.pjm/1102977874 102977874
  9. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
  10. I. E. Hirica, C. Udriste, and C. Udriste, Ricci and Riemann solitons, Balkan J. Geom. Appl. 21 (2016), no. 2, 35-44.
  11. Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. http://projecteuclid.org/euclid.kmj/1138036371 https://doi.org/10.2996/kmj/1138036371
  12. Z. Olszak and R. Ro,sca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), no. 3-4, 315-323.
  13. Z. Ozturk, N. Aktan, and C. Murathan, Almost α -Cosymplectic (κ, µ, ν)-spaces, http://arxiv.org/abs/1007.0527v1.
  14. S. E. Stepanov and I. I. Tsyganok, The theory of infinitesimal harmonic transformations and its applications to the global geometry of Riemann solitons, Balkan J. Geom. Appl. 24 (2019), no. 1, 113-121.
  15. C. Udriste and C. Udriste, Riemann flow and Riemann wave, An. Univ. Vest Timis. Ser. Mat.-Inform. 48 (2010), no. 1-2, 265-274.
  16. C. Udriste and C. Udriste, Riemann flow and Riemann wave via bialternate product Riemannian metric, preprint, arXiv.org/math.DG/1112.4279v4 (2012).
  17. V. Venkatesha, H. A. Kumara, and D. M. Naik, Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 7, 2050105, 22 pp. https://doi.org/10.1142/S0219887820501054
  18. Y. Wang, A generalization of the Goldberg conjecture for coKahler manifolds, Mediterr. J. Math. 13 (2016), no. 5, 2679-2690. https://doi.org/10.1007/s00009-015-0646-8
  19. K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970.