• 제목/요약/키워드: Solid oxide fuel cell(SOFC)

검색결과 341건 처리시간 0.022초

Thermal Stress Analysis on the Solid Oxide Fuel Cell according to Operating Temperature

  • Kwon, Oh-Heon;Kang, Ji-Woong;Jo, Se-Jin
    • International Journal of Safety
    • /
    • 제10권1호
    • /
    • pp.1-4
    • /
    • 2011
  • The fuel cell is one of the green energy receiving a lot of attention. Among the fuel cells, it is generally referred to SOFC(solid oxide fuel cell) which is made up composites of a solid. SOFC has excellent merits in the side of environment and energy. However because of the high operating temperature, it has economic loss by the using of expensive materials and problems of structural instability by thermal stresses. Therefore, this study aims to the effect of analysis by the FEMLAB. The results have deformations and the maximum stresses from the variation of the thickness of vulnerability spots. The deformation shows expansion as 0.82% and the stress ${\sigma}_{xx}$ is 392MPa in electrolyte and -56.31MPa in anode. When increasing or decreasing the thickness to 50% of the reference thickness about the electrolyte which is vulnerable spots.

  • PDF

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기 (kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System)

  • 윤상호;강인용;배규종;배중면
    • 대한기계학회논문집B
    • /
    • 제32권7호
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

Cell Fabrication and Performances of SOFC prepared by DBM and SPM

  • Kim, Gwi-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권6호
    • /
    • pp.286-288
    • /
    • 2007
  • The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for solid oxide fuel cell, by the way, Ni-YSZ materials are used as anode of solid oxide fuel cell widely. In order to reduce production costs, we have fabricated single solid oxide fuel cell by doctor blade and screen printing method. Disk-type planar solid oxide fuel cell with an effective electrode area of about $7cm^2$ were fabricated and run for 500 h to investigate cell performance. The current density at a voltage of 0.7 V was $850mA/cm^2$.

액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발 (Preliminary study and development of $kW_e$-class liquid fuel based SOFC system)

  • 윤상호;김선영;배중면;백승환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF

SOFC의 단위전지 특성평가 (Characteristics of Unit Cell for SOFC)

  • 김귀열;엄승욱;문성인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.80-83
    • /
    • 1996
  • Among the fuel cell system, solid oxide fuel eels is constructed of ceramics, so stack construction is simple , power density is very high, and there is no corrosion problems. The purpose of this research is investigate the characteristics of unit cell for SOFC .

  • PDF

기공전구체를 이용한 고체전해질 연료전지의 동시소성 연구 (Co-firing of Solid Oxide Fuel Cell Using Pore Former)

  • 문지웅;이홍림;김구대;김재동;이해원
    • 한국세라믹학회지
    • /
    • 제35권3호
    • /
    • pp.273-279
    • /
    • 1998
  • Unite cell of soid oxide fuel cell (SOFC) that consists of a dense yttria-stabilized zirconia(YSZ) electrolyte a porous nickel-YSZ cermet anode and a porous strontium- doped lanthanum manganate(LSM) cathod was fabricated from using pore former through co-firing technique. Initial sintering shrinkage rates of each layer were identified for fabricating SOFC. Heterogenous sintering was very effective in tailoring shrinkage rate for three layers. The powder tailoring necessary for shrinkage rate matching are as follows ; electrolyte of 60% TZ8YS/ 40% TZ8Y mixture anode of 51wt% NiO/49 wt% (70wt% TZ8YS/30 wt% UT ZrO2) mixture and cathode of 80% LSM/20% UT ZrO2 mixture . The overall sintering shrinkage rate differences of three layers using these compositions were maintained in a few percent.

  • PDF

평판형 고체산화물 연료전지 제조 및 특성 연구 (Fabrication and Chacterization of Planar Solid Oxide Fuel Cell)

  • 송락현;이병록;김창수;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1700-1702
    • /
    • 1996
  • Solid oxide fuel cell(SOFC) is an electrochemical energy device which converts the free energy of fuel gas directly to electric energy. SOFC has several diratinct advantages over other types of fuel cells: no use of noble metals, no requirement of a reformer, no problem of liquid electrolyte management, and no problem of corrosion by liquid electrolyte. In this study, we have investigated the cell components and the single cell of the planar SOFC fabricated by composite plate process, in which green films of electrolyte, anode and cathode were co-fired. The planar SOFCs were tested and the cell performance characteristics wag evaluated by using electrochemical methods.

  • PDF

선박동력용 SOFC/ST 하이브리드시스템의 성능 평가 (Performance Analysis of Methane Fueled Marine Solid Oxide Fuel Cell and Steam Turbine Hybrid Power System)

  • 이경진;오진숙;김선희;오세진;임태우;김종수;박상균;김만응;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.590-599
    • /
    • 2011
  • 연료전지시스템의 고효율화를 목적으로 수소가 가진 화학적 에너지를 최대한 전력화하기 위하여 연료전지에서 발생하는 폐열을 적극 활용할 필요가 있다. 이런 목적에 폐열을 이용하는 증기터빈과 연료 전지를 결합시킨 SOFC/ST 하이브리드시스템이 적합하다. 본 논문은 SOFC/ST 하이브리드시스템에 대한 셀의 작동온도와 전류밀도, 연소기 출구 온도, 보일러 출구 가스온도가 시스템의 성능에 미치는 영향 등을 시뮬레이션을 통하여 검토한 것으로 증기터빈의 일정 조건에서는 연료전지 스택에서 다량의 폐열이 발생하는 경우가, 연료전지의 일정 조건에서는 연소기에 추가적 연료 공급을 억제하는 경우에서 하이브리드시스템의 효율이 증가됨을 확인하였다.

중.저온형 고체산화물 연료전지에서 연료로 공급되는 CO 와 H2 가 성능에 미치는 영향 (Performance Behavior by H2 and CO as a Fuel in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC))

  • 박광진;배중면
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.963-969
    • /
    • 2008
  • The performance behavior of solid oxide fuel cell using $H_2$ and CO as fuels was investigated. The power densities and impedance results showed a little variation as the ratio of $H_2$ and CO changed. However, when the pure CO was used as a fuel, area specific resistance (ASR), especially low frequency region, was increased. This might be due to carbon deposition on anode. The maximum power density was 60% lower using CO than using $H_2$. Carbon deposition reduced after constant current was applied. The SOFC performance was recovered from the carbon deposition after applying constant current during 100h.