• 제목/요약/키워드: Solder fatigue

검색결과 89건 처리시간 0.031초

솔더볼 조성에 의한 피로강도의 영향 (Effects of Fatigue Strength by Solder Ball Composition)

  • 김경수;김진영
    • 한국진공학회지
    • /
    • 제13권3호
    • /
    • pp.127-131
    • /
    • 2004
  • BGA(ball grid array) package에서 솔더볼의 피로강도에 대한 솔더 조성에 대한 영향을 조사하기 위하여 패키지 신뢰성 시험을 실시하였다. 공정조성 솔더 63Sn/37Pb, 62Sn/36Pb/2Ag, 63Sn/34.4Pb/2Ag/0.5Sb 솔더를 이용하여 제조된 시편을 MRT Lv3 (moisture resistance test level) 조건에서 전처리 후 T/C(temperature cycle test) 실험을 수행하였다. 각각의 신뢰성 시험에 대하여 전단강도를 측정하였으며, 미세 조직 사진을 얻었다. 또한, SEM (scanning electron microscope)과 EDX (energy dispersive X-ray)를 이용하여 파괴 기구에 대한 분석을 실시하였다. Sn63Pb34.5Ag2Sb0.5 솔더에서 Au-Sn 성장비는 63Sn/37Pb, 62Sn/36Pb/2Ag 솔더에 비해 느리다 솔더 조성에 따른 솔더볼의 전단응력 저하에 대하여 논의하였다.

Virtual Qualification을 통한 자동차용 전장부품의 수명 평가 (Life Assessment of Automotive Electronic Part using Virtual Qualification)

  • 이해진;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.143-146
    • /
    • 2005
  • In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are mai or roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach fur given vibration environments in automotive application. Using the results of vibration simulation, fatigue lift is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder strains/stresses. The primary focus in this paper is on surface-mount interconnect fatigue failures and the critical component selected for this analysis is 80 pin plastic leaded microprocessor.

  • PDF

Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동 (Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering)

  • 진상훈;강남현;조경목;이창우;홍원식
    • Journal of Welding and Joining
    • /
    • 제30권2호
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응 (The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles)

  • 오철민;박노창;한창운;방만수;홍원식
    • 대한금속재료학회지
    • /
    • 제47권8호
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

솔더 합금 종류 및 솔더 조인트의 신뢰성 평가 기법 (Solder Alloy Types and Solder Joint Reliability Evaluation Techniques)

  • 김유권;김헌수;김태완;김학성
    • 마이크로전자및패키징학회지
    • /
    • 제30권1호
    • /
    • pp.17-29
    • /
    • 2023
  • 본 논문에서는 전자제품의 소형화와 고성능화에 따라 패키징 기술에서 핵심적인 역할을 하는 솔더 조인트의 신뢰성 평가 방법을 소개한다. 우선, 다양한 합금 조성과 제품 형태에 따른 솔더의 특성을 설명하고, 여러 패키지에서의 솔더 조인트 구조에 대한 개요를 제시한다. 그 다음 솔더 합금의 조성과 미시구조가 솔더의 열적 및 기계적 특성에 미치는 영향을 분석하며, 솔더 크리프 거동에 대해 간략히 소개한다. 이어서, 신뢰성 평가를 위한 크리프 모델과 피로 모델 등을 고려한 분석 기법들을 소개하고, 솔더 조인트의 신뢰성을 향상시킬 수 있는 방안에 대해 논의한다. 본 연구는 반도체 패키징 기술 분야에서 솔더 조인트의 신뢰성 평가와 개선에 유익한 정보를 제공할 것으로 기대된다.

플립칩 패키지에서 무연 솔더 조인트 및 UBM의 열충격 특성 해석 (An Analysis on the Thermal Shock Characteristics of Pb-free Solder Joints and UBM in Flip Chip Packages)

  • 신기훈;김형태;장동영
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.134-139
    • /
    • 2007
  • This paper presents a computer-based analysis on the thermal shock characteristics of Pb-free solder joints and UBM in flip chip assemblies. Among four types of popular UBM systems, TiW/Cu system with 95.5Sn-3.9Ag-0.6Cu solder joints was chosen for simulation. A simple 3D finite element model was first created only including silicon die, mixture between underfill and solder joints, and substrate. The displacements due to CTE mismatch between silicon die and substrate was then obtained through FE analysis. Finally, the obtained displacements were applied as mechanical loads to the whole 2D FE model and the characteristics of flip chip assemblies were analyzed. In addition, based on the hyperbolic sine law, the accumulated creep strain of Pb-free solder joints was calculated to predict the fatigue life of flip chip assemblies under thermal shock environments. The proposed method for fatigue life prediction will be evaluated through the cross check of the test results in the future work.

$\mu$BGA 솔더접합부의 형상과 수명평가 (Optimal Shape of $\mu$BGA Solder Joints and Thermal Fatigue Life)

  • 신영의;황성진;김종민
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.117-120
    • /
    • 2002
  • In this paper, several methods to predict the solder joint shape are studied. Although there are various methods to predict the solder joint shape, such as truncated sphere method, force-bal tranced analytical solution, and energy-based methods like surface evolver developed by Ken Brakke, we calculate solder joint shape of $\mu$BGA by two solder joint shape prediction methods(truncated sphere method and surface evolver) and then compare results of each method. The results in dicate that two methods can accurately predict the solder joint shape in an accurate range. After that, we calculate reliability solder joint shape under thermal cycle test by FEA program ANSYS. As a result, it could be found that optimal solder joint shape calculated by solder joint prediction method has best reliability in thermal cycle test.

  • PDF

고장물리 기반 수중 매설형 PBA에 대한 신뢰성 설계 연구 (Reliability Design Analysis for Underwater Buriend PBA Based on PoF)

  • 김지영;이기원;윤홍우;이승진;허준기;권형안
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권4호
    • /
    • pp.280-288
    • /
    • 2017
  • Purpose: PBA buried in underwater requires high reliability because of its mission critical characteristic and harsh operational environment during its life cycle. Therefore, various reliability improvement activities are necessary. The defect on PBA manufacturing process have been studied, as a result, many activities and standards have been presented. However, there are less studies regarding failure pattern on physical features based on design. In this paper, we studied a possible failure patten based on physical features that is related with manufacturing process of PBA. And reliability improvement design based on PoF (Physical of Failure) were intruduced in this paper. Methods: A reliability prediction simulation were performed on the components A and B of the H system using Sherlock Software which is a PoF commercial tool from DFR solution. Solder fatigue and PTH fatigue analysis based on thermal cycling profiles and random vibration was analyzed on three earthquake response spectrum. Result: It was validated that life time and reliability improvement design through solder fatigue and PTH fatigue analysis in case of component. For compoenet B, random vibration fatigue was additionally analyzed and validated reliability for earthquakes profile. Conclusion: In design stage prior to manufacturing, PoF can be analyzed, and it is possible to make a reliability improvement/validated design using design data. This study can be applied in every design step and contribute to make more stable development product.