• 제목/요약/키워드: Solar-Energy

Search Result 5,710, Processing Time 0.033 seconds

Studies on the Dry Matter Production and Growth Analysis of Rice Plants (수도품종의 물질생산과 생장해석에 관한 연구)

  • Ho-Yul Kim;Seung-Dal Song
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.20
    • /
    • pp.74-86
    • /
    • 1975
  • Experiments were carried out to know some physiological characters of several rice varieties such as Suweon 213-1, Suweon 214, Palkweng, Akibare and Nongbaek. In experiments, total standing crop, leaf area and total net production of dry matter were higher in the variety of Suweon 213-1 than the other varieties. RGR, NAR and CGR showed the highest at heading period of Suweon 213-1 than the other varieties. Efficiency of solar energy utilization also showed the highest through the entire growing period of Suweon 213-1. The amount of net production and dead parts could be estimated by the successive application of the productive structure.

  • PDF

$CO_2$ and Water Vapor Flux Measurement by Eddy Covariance Method in a Paddy Field in Korea (한반도 논에서의 에디공분산 방법에 의한 $CO_2$와 수증기 플럭스 관측)

  • Lee Jeongtaek;Lee Yangsoo;Kim Gunyeob;Shim Kyomoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • This study was conducted to measure and understand the exchange of CO₂ and water in a rice canopy. Eddy covariance system was installed on a 10m tower along with other meteorological instruments. CO₂ flux and surface energy balance were measured throughout the whole growing season in 2003 over a typical paddy field in Icheon, Korea. During the early growth stage in May and June, most of net radiation was partitioned to latent heat flux with daytime Bowen ratio of 0.3 to 0.7. Evapotranspiration (i.e., daily integrated latent heat flux) typically ranged from 3 to 4 mm d/sup -1/, with even higher rates on sunny days. Daily integrated net ecosystem exchange (NEE) of CO₂ increased with increasing solar radiation and leaf area index (LAI). The NEE was especially high during the stages of young panicle formation and heading. On 1 June 2003, when the rice field was flooded, it was a weak sink of atmospheric CO₂ with an uptake rate of 9.1 gm/sup -2/d/sup -1/. Despite frequent rainy and cloudy conditions in summer, maximum NEE of 36.2 gm/sup -2/d/sup -1/ occurred on 31 July prior to heading stage. As rice crop senesced after early September, the NEE decreased.

Culture and Ecology-Oriented City Marketing: A Case Study of Gangneung City (문화.생태를 이용한 도시마케팅 사례 연구)

  • Heo, Chung-Uk
    • Korean Business Review
    • /
    • v.22 no.2
    • /
    • pp.157-179
    • /
    • 2009
  • This papers aims to focus on the city marketing as the green growth policy strategies using a case study of Gangneung City, Republic of Korea. In the case study it was verified the fields of urban growth including ecology, culture, alternative and recycled energy, green transportation system. The implications of the study were as follows: First, the city government had regenerated the coastal pine forest through removing unlicensed buildings which were squatted down in decades. Secondly, the city government has recognized the value of culture that possessed various types of cultural asserts. Thirdly, it is possible to use and produce the ocean energy with the tidal power plant, wind power plant and green deep water because Gangneung City has the ocean-oriented image and is located the coastal region. Lastly, the city government has been utilizing the LED traffic light using solar heat and is going to apply the green car like an electric car. This paper indicates the importance of the alternatives of the green growth-oriented policy through city marketing using the concept of culture and ecology. The city government will strive after an advanced triple bottom line with the ecological sustainability, cultural diversity and economic effectiveness in the near future.

  • PDF

Growth and optical characterization of $CuInSe_2$ single crystal thin film for solar cell application (태양전지용 $CuInSe_2$단결정 박막 성장과 광학적 특성)

  • 백승남;홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.202-209
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the $CuInSe_2$single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CuInSe_2$compound crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$single crystal thin films measured from Hall effect by van der Pauw method. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr. From the photoluminescence measurement on $CuInSe_2$single crystal thin film, we observed free exciton ($E_x$) existing only high quality crystal and neutral bound exciton ($A^{\circ}$, X) having very strong peak intensity. Then, the full-width-at-half-maximum (FWHM) and binding energy of neutral donor bound exciton were 7 meV and 5.9 meV, respectivity. By haynes rule, an activation energy of impurity was 59 meV.

Analysis of the Thermal Environment Characteristics of Thatched Roof for Eco-friendly Rural Housing Development -Focused on the Neolithic Thatched Roof Dugout Hut- (농촌 친환경 주거 개발을 위한 이엉지붕 열환경 특성 분석 -신석기시대 이엉지붕 움집을 대상으로-)

  • Song, Heon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Due to the development of civilization, the humans is privileged the rich of technologies for housing thermal environment. But, this kind of technological development caused enough trouble of energy excessive consumption. For solve this problem, many researchers strive to exploit the low energy sustainable techniques. For such a reason, the eco-friendly techniques of vernacular house are resurfacing. These traditional techniques are applied to a development of eco-friendly modern housing. They are no longer recognized as outdated products. On this context, this study proposes an scientific analysis on the thermal environment characteristics of Neolithic thatched-roof dugout hut(Um house). So far the several studies have been carried out in viewpoint of the history and structural compositions of the Um house which has been used as the normal housing for about 1000 years in the Neolithic era, however the thermal characteristics analysis of the Um house has never been studied. Um house is not a housing which has been composed by the scientific analysis or architectural design technology, but evolved empirically over a long period. This study on the thermal environment characteristics of Um house would provide basic information for the development of korean eco-friendly rural housing by korean climate characteristics. In this study, the thermal environmental characteristics of the Um house in the Neolithic era was analysed experimentally. The results of this study could be summarized as follows: 1. When the solar insolation and the ambient temperature in the daytime were $420W/m^2$ and $17^{\circ}C$ respectively, the surface temperature of the Um house roof covered with the rice straw was $37^{\circ}C$ and that in the roof $32^{\circ}C$, and in the conditions above the air temperature in the room was $15^{\circ}C$. 2. When the ambient relative humidity was 40%, that in the room of the Um house 50%, and at the ambient relative humidity of 90~100%, that in the room was 60%. 3. Through the experimental analysis, it was verified that the enthalpy and relative humidity is in an inverse relationship. 4. In general the comfort degree in the living space is changed with the seasonal climate, also in this study, the comfort degree in the room of the Um house in October and November was higher than that in May and June.

Mechanical Properties of a High-temperature Superconductor Bearing Rotor in a 10 kWh Class Superconductor Flywheel Energy Storage System (10 kWh급 초전도 베어링 회전자의 기계적 특성 평가)

  • Park, B.J.;Jung, S.Y.;Kim, C.H.;Han, S.C.;Park, B.C.;Han, S.J.;Doo, S.G.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Recently, superconductor flywheel energy storage systems (SFESs) have been developed for application to a regenerative power of train, a power quality improvement, the storage of distributed power sources such as solar and wind power, and a load leveling. As the high temperature superconductor (HTS) bearings offer dynamic stability without the use of active control, accurate analysis of the HTS bearing is very important for application to SFESs. Mechanical property of a HTS bearing is the main index for evaluating the capacity of an HTS bearing and is determined by the interaction between the HTS bulks and the permanent magnet (PM) rotor. HTS bearing rotor consists of PM and iron collector and the proper dimension design of them is very important to determine a supporting characteristics. In this study, we have optimized a rotor magnet array, which depends on the limited bulk size and performed various dimension layouts for thickness of the pole pitch and iron collector. HTS bearing rotor was installed into a single axis universal test machine for a stiffness test. A hydraulic pump was used to control the amplitude and frequency of the rotor vibration. As a result, the stiffness result showed a large difference more than 30 % according to the thickness of permanent magnet and iron collector. This is closely related to the bulk stiffness controlled by flux pining area, which is limited by the total bulk dimension. Finally, the optimized HTS bearing rotor was installed into a flywheel system for a dynamic stability test. We discussed the dynamic properties of the superconductor bearing rotor and these results can be used for the optimal design of HTS bearings of the 10kWh SFESs.

Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area (SEBAL 모형과 Terra MODIS 영상을 이용한 혼효림, 논 지역에서의 공간증발산량 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.227-239
    • /
    • 2016
  • This study is to estimate Surface Energy Balance Algorithm for Land (SEBAL) daily spatial evapotranspiration (ET) comparing with eddy covariance flux tower ET in Seolmacheon mixed forest (SMK) and Cheongmicheon rice paddy (CFK). The SEBAL input data of Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) from Terra MODIS products and the meteorological data of wind speed, and solar radiation were prepared for 2 years (2012-2013). For the annual average flux tower ET of 302.8 mm in SMK and 482.0 mm in CFK, the SEBAL ETs were 183.3 mm and 371.5 mm respectively. The determination coefficients ($R^2$) of SEBAL ET versus flux tower ET for total periods were 0.54 in SMK and 0.79 in CFK respectively. The main reason of SEBAL ET underestimation for both sites was from the determination of hot pixel and cold pixel of the day and affected to the overestimation of sensible heat flux.

Characteristics of Temperature and Salinity observed at the Ieodo Ocean Research Station (이어도 종합해양과학기지에서 관측된 수온과 염분 자료의 특징)

  • Oh, Kyung-Hee;Park, Young-Gyu;Lim, Dong-Il;Jung, Hoi-Soo;Shim, Jae-Seol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.225-234
    • /
    • 2006
  • Using the data from the sea water monitoring system installed at the Ieodo Ocean Research Station, we have analyzed the water properties around the station as well as the characteristics of the fresh water from the Changjiang River and the influence of typhoons on the sea water. In general, the accuracy and stability of the temperature data are high, but those of the salinity data are worse than the specification of the instruments. The daily variation of temperature and salinity is mainly controlled by the vertical motion of a water column due to semi-diurnal tide and diurnal change in the solar insolation. Seasonal change is prominent in temperature data. The freshwater from the Changjiang River is the main cause of large salinity variation. In August 2003 and August 2004, about 10 days before fresh water was observed near the Jeju Island, low salinity water was observed at the Ieodo Station. On the other hand, in July 2005 fresh water was observed at the station but not at around the Jeju Island. In other words, the fresh water observed at the Ieodo Station does not always expand to the Jeju Island. Two strong typhoons passed by the station in September 2003 and August 2004. The effects of the typhoons were lasted for 3 to 4 days.

  • PDF

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films (Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성)

  • Kim, Geun-Woo;Seo, Yong-Jun;Sung, Chang-Hoon;Park, Keun-Young;Cho, Ho-Je;Heo, Si-Nae;Koo, Bon-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Air Temperature Decreasing Effects by Shading and Ventilation at Micro-scale Experiment Plots (소공간 실험구의 차광과 통풍에 의한 기온저감 효과)

  • Kim, Hyun-Cheol;Woo, Ji-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.39-48
    • /
    • 2010
  • The purpose of this study was to analyze air temperature decreasing effects by shading and ventilation at micro-scale experiment plots, especially focused on the Wet Bulb Globe Temperature (WBGT) in outdoor spaces. To monitor the time-serial changes of Dry-bulb Temperature (DT), Globe Temperature (GT) and Relative Humidity (RH) in the wind blocking and shading conditions, Two hexahedral steel frames were established on the open grass field, the dimension of each frame was 1.5m(W)${\times}$1.5m(L)${\times}$1.5m(H). Four vertical side of one frame was covered by transparent polyethylene film to prevent wind passing through (Wind break plot; WP). The top side of the other frame was covered with shading curtain which intercept 95% of solar light and energy (Shading plot; SP). And, Another vertical steel frame without any treatment preventing ventilation and sunlight was set up, which represents natural conditions (Control plot; CP). The major findings were as follows; 1. The average globe temperature (GT) was highest at WP showing $50.94^{\circ}C$ and lowest at SP showing $34.58^{\circ}C$. The GT of natural condition (SP) was $42.31^{\circ}C$ locating the midst between WP and SP. The difference of GT of each plot was about $8-16^{\circ}C$, which means the ventilation and shading has significant effect on decreasing the temperature. 2. WP showed the highest average dry-bulb temperature (DT) of $38.41^{\circ}C$ which apparently differ from SP and CP showing $31.94^{\circ}C$ and $33.15^{\circ}C$ respectively. The DT of SP and CP were nearly the same. 3. The average relative humidity (RH) was lowest at WP showing 15.21%, but SP and CP had similar RH 28.79%, 28.02% respectively. 4. The average of calculated WBGT were the highest at the WP ($27.61^{\circ}C$) and the lowest at the SP ($23.64^{\circ}C$). The CP ($25.49^{\circ}C$) was in the middle of the others. As summery, compared with natural condition (CP), the wind blocking increased about $2.11^{\circ}C$ WBGT, but the shading decreased about $1.84^{\circ}C$ WBGT. So It can be apparently said that the open space with much shading trees, sheltering furnitures and well-delivered wind corridor can reduce useless and even harmful energy for human outdoor activity considerably in outdoor spaces.