DOI QR코드

DOI QR Code

Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area

SEBAL 모형과 Terra MODIS 영상을 이용한 혼효림, 논 지역에서의 공간증발산량 산정 연구

  • Lee, Yong Gwan (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Jung, Chung Gil (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Ahn, So Ra (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Kim, Seong Joon (Dept. of Civil and Environmental System Engineering, Konkuk University)
  • 이용관 (건국대학교 사회환경시스템공학과) ;
  • 정충길 (건국대학교 사회환경시스템공학과) ;
  • 안소라 (건국대학교 사회환경시스템공학과) ;
  • 김성준 (건국대학교 사회환경시스템공학과)
  • Received : 2015.07.22
  • Accepted : 2016.01.27
  • Published : 2016.03.31

Abstract

This study is to estimate Surface Energy Balance Algorithm for Land (SEBAL) daily spatial evapotranspiration (ET) comparing with eddy covariance flux tower ET in Seolmacheon mixed forest (SMK) and Cheongmicheon rice paddy (CFK). The SEBAL input data of Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) from Terra MODIS products and the meteorological data of wind speed, and solar radiation were prepared for 2 years (2012-2013). For the annual average flux tower ET of 302.8 mm in SMK and 482.0 mm in CFK, the SEBAL ETs were 183.3 mm and 371.5 mm respectively. The determination coefficients ($R^2$) of SEBAL ET versus flux tower ET for total periods were 0.54 in SMK and 0.79 in CFK respectively. The main reason of SEBAL ET underestimation for both sites was from the determination of hot pixel and cold pixel of the day and affected to the overestimation of sensible heat flux.

본 연구는 Surface Energy Balance Algorithm for Land (SEBAL) 모형을 이용해 국내의 혼효림(설마천)과 논(청미천) 유역에 대해 일 증발산량을 산정하고 각 유역의 플럭스 타워 실측 증발산량과 비교하였다. SEBAL 모형의 입력 자료로 위성자료는 2개년(2012-2013)의 Terra MODIS product 중 Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI)를 활용하였으며, 기상자료는 유역 인근에 위치한 기상청 기상관측소로부터 풍속, 일사량 자료를 제공받아 공간 내삽(Interpolation)하여 활용하였다. 모의결과 플럭스 타워의 연평균 증발산량은 설마천에서 302.8 mm, 청미천에서 482.0 mm, SEBAL 모의 증발산량은 각각 183.3 mm, 371.5 mm로 산정되었다. 전체 모의기간에 대한 SEBAL 모의 증발산량의 실측 증발산량과의 결정계수는 설마천 플럭스 타워에서 0.54, 청미천 플럭스 타워에서 0.79로 나타났다. 두지점에서 SEBAL 모의 증발산량이 과소 추정된 주된 이유로는 일별 hot pixel과 cold pixel로부터 산정한 현열 플럭스의 과대추정으로 인한 것으로 판단된다.

Keywords

References

  1. Ahmad, M.D., Biggs, T., Turral, H., and Scott, C.A. (2006). "Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India." Water Science & Technology, Vol. 53, No. 10, pp. 83-90. https://doi.org/10.2166/wst.2006.301
  2. Alcamo, J., Doll, P., Kaspar, F., and Siebert, S. (1997). Global change and global scenarios of water use and availability: An application of Water GAP 1.0. Report A9701. Kassel, Germany: University of Kassel, Center for Environmental Systems Research.
  3. Allen, R., Tasumi, M., Trezza, R., Waters, R., and Bastiaanssen. W. (2002). Surface Energy Balance Algorithm for Land (SEBAL)-Advanced training and Users Manual. Idaho implementation, version 1.
  4. Allen, R.G., Tasumi, M., and Trezza, R. (2007). "Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model." Journal of Irrigation Drainage Engineering. Vol. 133, No. 4, pp. 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
  5. Anderson, M.C., Norman, J.M., Diak, G.R., Kustas, W.P., and Mecikalski, J.R. (1997). "A twosource time-integrated model for estimating surface fluxes using thermal infrared remote sensing." Remote Sensing of Environment. Vol. 60, No. 2, pp. 195-216. https://doi.org/10.1016/S0034-4257(96)00215-5
  6. Bastiaanssen, W.G.M., Noordman, E.J.M., Pelgrum, H., Davids, G., Thoreson, B.P., and Allen, R.G. (2005). "SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions." Journal of Irrigation and Drainage Engineering, Vol. 131, pp. 85-93. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)
  7. Bastiaanssen, W.G.M. (2000). "SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey", Journal of Hydrology, Vol. 229, No. 1. pp 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
  8. Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., and Holtslag, A.A.M. (1998). "A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation." Journal of Hydrology, Vol. 212-213, pp. 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
  9. Bonan, G. (2008), Ecological Climatology: Concepts and Applications, Second Edition, Cambridge University Press, Cambridge USA.
  10. Choi, M., Kustas, W.P., Anderson, M.C., Allen, R.G., Li, F., and Kjaersgaard, J.H. (2009). "An intercomparison of three remote sensingbased surface energy balance algorithms over a corn and soybean production region(IOWA, U.S.) during SMACEX", Agricultural and Forest Meteorology, Vol. 149, No. 12, pp. 2082-2097. https://doi.org/10.1016/j.agrformet.2009.07.002
  11. Di, L., Singh, V.P., and Li, Z.L. (2011). "How sensitive is SEBAL to changes in input variables, domain size and satellite sensor?", Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 116, No. D21.
  12. Di, L., Singh, V.P., and Scanlon, B.R. (2012). "Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation." Journal of Geophysical Research. Vol. 117, No. D5, D05113.
  13. Gowda, P.H., Howell, T.A., Chavez, J.L., Copeland, K.S., and Paul, G. (2008). "Comparing SEBAL ET with lysimeter data in the Semi-arid Texas High Plains." Proceedings of the World Environmental & Water Resources Congress 2008, pp. 12-16.
  14. Ha, R., Shin, H.J., Lee, M.S., and Kim, S.J. (2010). "Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 3B, pp. 233-242.
  15. Hong, S., Hendrickx, J., and Borchers, B. (2009). "Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30m) to MODIS (250m) scale." Journal of hydrology, Vol. 370, No. 1, pp. 122-138. https://doi.org/10.1016/j.jhydrol.2009.03.002
  16. Im, J.S. (2013). Applicability evaluation of SEBAL using multitemporal satellite images and observed evapotranspiration data : focused on Wangsuk river basin, Master of Philosophy, Department of Geography, Seoul National University.
  17. Jeong, S.T., Jang, K.C., Kang, S.K., Kim, J., Kondo, H., Gamo, M., Asanuma, J., Saigusa, N., Wang, S., and Han, S. (2009). "Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 4, pp. 174-184. https://doi.org/10.5532/KJAFM.2009.11.4.174
  18. Jiang, L., and Islam, S., (2001). "Estimation of surface evaporation map over southern Great Plains using remote sensing data." Water Resources Research. Vol. 37, No. 2, pp. 329-340. https://doi.org/10.1029/2000WR900255
  19. Kotoda, K. (1989). "Estimation of river basin evapotranspiration from consideration of topographies and land use conditions, Estimation of Areal Evapotranspiration", IAHS Publ. no. 177.
  20. Korea Institute of Construction Technology, (2006). Operation and research on the hydrological characteristics of the experimental catchment. Korea Institute of Construction Technology 2006-062, pp. 182.
  21. Kwon, H.J., Lee, J.H., Lee, Y.K., Lee, J.W., Jung, S.W., and Kim, J. (2009). "Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment", Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 1, pp. 39-47. https://doi.org/10.5532/KJAFM.2009.11.1.039
  22. Lee, H.C., Lee, B.Y., Kim, J., and Shim, J.S. (2004). "Tower-based Flux Measurement Using the Eddy Covariance Method at Ieodo Ocean Research Station." Ocean and Polar Research, Vol. 26, No. 2, pp. 145-154. https://doi.org/10.4217/OPR.2004.26.2.145
  23. Lee, Y.G., Kim, S.H., Ahn, S.R., Choi, M.H., Lim, K.S., and Kim, S.J. (2015). "Estimation of Spatial Evapotranspiration Using Terra MODIS satellite image and SEBAL Model-For Yongdam Dam Watershed-" Journal of the Korean Association of Geographic Information Studies, Vol. 18, No. 1, pp 90-104. https://doi.org/10.11108/kagis.2015.18.1.090
  24. Menenti, M., and Choudhury, B.J. (1993). "Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range." In: H.J. Bolle et al. (editors), Exchange processes at the land surface for a range of space and time scale, IAHS Publ. No. 212, pp. 561-568.
  25. MLTM. (2008). Streamflow ivestigation report in 2008, Ministry of Land, Transport and Maritime Affair.
  26. Moran, M.S., Clarke, T.R., Inoue, Y., and Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment. Vol. 49, No. 3, pp. 246-263. https://doi.org/10.1016/0034-4257(94)90020-5
  27. Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel R., and Veith. T. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  28. Morse, A., Tasumi, M., Allen, R.G., and Kramber, W.J. (2000). Application of the SEBAL methodology for estimating consumptive use of water and streamflow depletion in the Bear River Basin of Idaho through remote sensing. Idaho Department of Water Resources-University of Idaho.
  29. Nash, J.E., and Sutcliffe, J.E. (1970). "River flow forecasting though conceptual models: Part I, A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  30. Nishida, K., Nemani, R.R., Running, S.W., and Glassy, J.M. (2003). "An operational remote sensing algorithm of land surface evaporation." Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 108, No. D9.
  31. Norman, J.M., Kustas, W.P., and Humes, K.S. (1995). "Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature." Agricultural and Forest Meteorology, Vol. 77, No. 3-4, pp. 263-293. https://doi.org/10.1016/0168-1923(95)02265-Y
  32. Ruhoff, A.L, Paz, A.R., Collischonn, W., Aragao, L.E.O.C., Rocha, H.R., and Malhi, Y.S. (2012). "A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazilian tropical savannas." Remote Sensing, Vol. 4, No. 3, pp. 703-725. https://doi.org/10.3390/rs4030703
  33. Sellers, P.J., Randall, D.A., Collatz, G.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., Collelo, G.D., and Nounoua, L. (1996). "A revised land surface parameterization (SiB2) for atmospheric GCMS, Part 1: Model formulation." Journal of Climate, Vol. 9, pp. 676-705. https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2
  34. Singh, R.K, Irmak, A., Irmak, S., Martin, D. (2008). "Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska." Journal of irrigation and drainage engineering, Vol. 134, pp. 273-285. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(273)
  35. Sur, C.Y., Han, S.J., Lee, J.H., and Choi, M.H. (2012). "Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method", Korean Journal of Remote Sensing, Vol. 28, No. 4, pp. 435-448. https://doi.org/10.7780/kjrs.2012.28.4.7
  36. Tang, R., Li, Z.-L., Chen, K.-S., Jia, Y., Li, C., and Sun, X. (2013). "Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data." Agricultural and Forest Meteorology, Vol. 174-175, pp. 28-42. https://doi.org/10.1016/j.agrformet.2013.01.008
  37. Tang, R., and Li, Z.-L. (2015). "Evaluation of two end-member-based models for regional land surface evapotranspiration estimation from MODIS data." Agricultural and Forest Meteorology. Vol. 202, pp. 69-82. https://doi.org/10.1016/j.agrformet.2014.12.005
  38. Tasumi, M,, Allen, R.G., and Trezza, R. (2008). "At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance." Journal of Hydrologic Engineering, Vol. 13, No. 2, pp. 51-63. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51)
  39. Teixeira, A., Bastiaanssen, W.G.M., Ahmad, M.D., and Bos, M.G. (2009). "Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle Sao Francisco River basin, Brazil. Part A: calibration and validation." Agricultural and Forest Meteorology, Vol. 149, pp. 462-476. https://doi.org/10.1016/j.agrformet.2008.09.016
  40. Yoo, J.W. (2003). The Estimation of Evapotranspiration with SEBAL Model in the Geumgang Upper Basin, Korea. Master of Philosophy, Department of Geography, Seoul National University.
  41. Zhang, R.H., Sun, X., Wang, W., Xu, J., Zhu, Z., and Tian, J. (2005). "An operational two-layer remote sensing model to estimate surface flux in regional scale: physical background." Ser. D Earth Sci. Vol. 48, pp. 225-244.

Cited by

  1. Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products vol.49, pp.11, 2016, https://doi.org/10.3741/JKWRA.2016.49.11.903
  2. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data vol.8, pp.12, 2016, https://doi.org/10.3390/rs8120983