DOI QR코드

DOI QR Code

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films

Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성

  • Kim, Geun-Woo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Seo, Yong-Jun (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Sung, Chang-Hoon (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Park, Keun-Young (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Cho, Ho-Je (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Heo, Si-Nae (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Koo, Bon-Heun (School of Nano & Advanced Materials Engineering, Changwon National University)
  • 김근우 (창원대학교 나노신소재공학부) ;
  • 서용준 (창원대학교 나노신소재공학부) ;
  • 성창훈 (창원대학교 나노신소재공학부) ;
  • 박근영 (창원대학교 나노신소재공학부) ;
  • 조호제 (창원대학교 나노신소재공학부) ;
  • 허시내 (창원대학교 나노신소재공학부) ;
  • 구본흔 (창원대학교 나노신소재공학부)
  • Received : 2012.07.31
  • Accepted : 2012.08.29
  • Published : 2012.10.01

Abstract

Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Keywords

References

  1. Y. H. Jung, E. S. Lee, B. Munir. R. A, Wibowo, and K. H. Kim, J. Kor. Inst. Surf. Eng., 38, 150 (2005).
  2. C. Y. and C. H., Sol. Energ. Mat. Sol., C92, 530 (2008).
  3. T. Minami, MRS Bulletin, 25, 38 (2000).
  4. K. Ellmer, J. Phys. D: Appl. Phys., 34, 3097 (2001). https://doi.org/10.1088/0022-3727/34/21/301
  5. J. F. Carlin, U. S. Geological Sruvey, Mineral Commodity Summaries (2006).
  6. Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly, ACS Nano, 3, 1373 (2009). https://doi.org/10.1021/nn900108x
  7. F. Rohlfing, D. Brezesinski, T. Rathousky, J. Feldhoff, A. Oekermann, T. Wark, M. B. Smarsly, Adv. Mater., 18, 2980 (2006). https://doi.org/10.1002/adma.200601224
  8. F. J. Yusta, M. L. Hitchman, and H,Shamlian, J. Mater. Chem., 7, 1421 (1997). https://doi.org/10.1039/a608525c
  9. T. P. Chow, M. Ghezzo, and B. J. Baliga, J. Elec. Trochem. Soc., 129, 1040 (1982). https://doi.org/10.1149/1.2124012
  10. E. Shanthi, V. Dutta, A. Banerjee, and K. L. Chopra, J. Appl. Phys., 51, 6243 (1981).
  11. J. Bruneaux, H. Cachet, M. Froment, and A. Messad, Electrochemica Acta, 39, 1251 (1994). https://doi.org/10.1016/0013-4686(94)E0044-Z
  12. J. Springer, A. Poruba, and M. Vanecek, J. Appl. Phys., 96, 5329 (2004). https://doi.org/10.1063/1.1784555
  13. M. N. Van Den Donker, A. Gordijn, H. Stiebig, F. Finger, B. Rech, B. Stannowski, R. Bartl, E.A.G. Hamers, R. Schlatmann, and G. J. Jongerden, Sol. Energy Mater. Sol. Cells, 91, 572 (2007). https://doi.org/10.1016/j.solmat.2006.11.012
  14. V. Hopfe and D. W. Sheel, Plasma Process. Polym., 4, 253 (2007). https://doi.org/10.1002/ppap.200600202
  15. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, Appl. Optics, 20, 1333 (1981). https://doi.org/10.1364/AO.20.001333
  16. D. Belanger, J. P. Dodelet, B. A. Lombos, and J. I. Dickson, J. Elec. Trochem. Soc., 132, 1398 (1985). https://doi.org/10.1149/1.2114132
  17. A. M. K. Dagamseh, B. Vet, F. D. Tichelaar, P. Sutta, and M. Zeman, Thin Solid Films, 516, 7844 (2008). https://doi.org/10.1016/j.tsf.2008.05.009
  18. S. G. Ansari, S. W. Gosavi, S. A. Gangal, R. N. Karekar, and R. C. Aiyer, Journal of Materials Science: Materials in Electronics, 8, 23 (1997). https://doi.org/10.1023/A:1018544702391
  19. K. H. Kim and C. G. Park, J. Elec. Trochem. Soc., 138, 2408 (1991). https://doi.org/10.1149/1.2085986
  20. Z. M. Jarzebski and J. P. Marton, J. Elec. Trochem. Soc.,: ReViews and News, 123, 199 (1976).
  21. A. F. Carroll and L. H. Slack, J. Elec. Trochem. Soc., 123, 1889 (1976). https://doi.org/10.1149/1.2132718
  22. H. Toyosaki, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett., 93, 132109 (2008). https://doi.org/10.1063/1.2993346
  23. A. Kurz, K. Brakecha, J. Puetz, and M. A. Aegerter, Thin Solid Films, 502, 212 (2006). https://doi.org/10.1016/j.tsf.2005.07.276
  24. S. W. Lee, Y. W. Kim, and H. Chen, Appl. Phys. Lett., 78, 350 (2001). https://doi.org/10.1063/1.1337640
  25. D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, and X. Zhu: J. Alloys Comp., 486, 462 (2009). https://doi.org/10.1016/j.jallcom.2009.06.174
  26. K. Tonooka and N. Kikuchi, Thin Solid Films, 515, 2415 (2006). https://doi.org/10.1016/j.tsf.2006.05.023
  27. A. M. K. Dagamseh, B. Vet, F. D. Tichelaar, P. Sutta, and M. Zeman, Thin Solid Films, 516, 7844 (2008). https://doi.org/10.1016/j.tsf.2008.05.009