• Title/Summary/Keyword: Solar water splitting

Search Result 84, Processing Time 0.023 seconds

The Properties of the Several Metal Oxides in the Water-splitting for H2 Production (물 분해 수소제조를 위한 금속산화물들의 반응특성)

  • Son, Hyun-Myung;Park, Chu-Sik;Lee, Sang-Ho;Hwang, Gab-Jin;Kim, Jong-Won;Lee, Jin-Bae
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.268-275
    • /
    • 2003
  • The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides (페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seok;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF

Thermodynamic Analysis of Thermochemical Process for Water Splitting (고온열 이용 공정의 열역학적 해석)

  • Kim, Jong-Won;Son, Hyun-Myung;Lee, Sana-Ho;Sim, Kyu-Sung;Jung, Kwang-Deog
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.3
    • /
    • pp.204-213
    • /
    • 2002
  • In this work, hydrogen production by a 2-step water-spritting thermochemical cycle based on metal oxides redox pairs was investigated on the bases of the thermodynamics and technical feasibility. Also, a 2nd-law analysis performed on the closed cyclic process indicates a maximum exergy conversion efficiency of 7.1% when using a solar cavity-receiver operated at 2300K and air/Fe3O4 molar ratio = 10.

Photoelectrochemical Properties of a Cu2O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting (물분해용 Cu2O 박막/ZnO 나노막대 산화물 p-n 이종접합 광전극의 광전기화학적 특성)

  • Park, Junghwan;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.214-220
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical(PEC) properties of a $Cu_2O$ thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in $Cu_2O$ thin film as an efficient photoelectrode for solar-driven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/ZnO$ p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/ZnO$ photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.77mA/cm^2$ at 0.5 V vs $Hg/HgCl_2$ in a $1mM\;Na_2SO_4$ electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs $Hg/HgCl_2$, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.

Photoelectrochemical Water Splitting Using GaN (GaN를 이용한 광전기화학적 물분해)

  • Oh, Ilwhan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • This review article summarizes photoelectrochemical water splitting using gallium nitride (GaN). GaN materials have been studied as novel photoelectrode material due to its chemical stability and easy band gap engineering. Unlike other semiconductor materials that are easily corroded in strongly acidic or alkaline electrolyte, n-type GaN is chemically stable enough to be used as photoanode in oxygen evolution reaction. Furthermore, studies on p-type GaN have been recently reported. This review briefly discusses problems that need to be solved before GaN materials find widespread use in solar fuel application.

Promoting Photoelectrochemical Performance Through the Modulation of MoS2 Morphology (MoS2의 형상변조를 통한 광전기화학 성능 촉진)

  • Seo, Dong-Bum;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2022
  • The development of advanced materials to improve the efficiency of photoelectrochemical (PEC) water splitting paves the way for widespread renewable energy technologies. Efficient photoanodes with strong absorbance in visible light increases the effectiveness of solar energy conversion systems. MoS2 in a two-dimensional semiconductor that has excellent absorption performance in visible light and high catalytic activity, showing considerable potential as an agent of PEC water splitting. In this study, we successfully modulated the MoS2 morphology on indium tin oxide substrate by using the metalorganic chemical vapor deposition method, and applied the PEC application. The PEC photocurrent of the vertically grown MoS2 nanosheet structure significantly increased relative to that of MoS2 nanoparticles because of the efficient transfer of charge carriers and high-density active sites. The enhanced photocurrent was attributed to the efficient charge separation and improved light absorption of the MoS2 nanosheet structure. Meanwhile, the photocurrent property of thick nanosheets decreased because of the limit imposed by the diffusion lengths of carriers. This study proposes a valuable photoelectrode design with suitable nanosheet morphology for efficient PEC water splitting.

Solar-hydrogen Production by a Monolithic Photovoltaic-electrolytic Cell

  • Jeon, Hyo Sang;Min, Byoung Koun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.149-153
    • /
    • 2012
  • Among the various solar-hydrogen production techniques a combination of a photovoltaic (PV) and an electrolytic cell into one single system, a monolithic PV-electrolytic cell, has been suggested as a promising one in terms of efficiency and stability. In this mini-review, we describe our recent efforts on the fabrication of the monolithic PV-electrolytic cell. Particularly, we focus on the electrocatalysts for water oxidation and its fabrication method suitable for a monolithic PV-electrolytic cell. We also introduce proto-type devices with a dye-sensitized solar cell module and an InGaP/GaAs photoelectrodes.

Preparation of WO3 by using sol-gel method for photoelectrode and its application for PEC cell (물분해로부터 수소 제조를 위한 광촉매용 텅스텐 산화물 박막 제조)

  • Hong, Eun-Mi;Im, Dong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.101-101
    • /
    • 2015
  • Photoelectrochemical water splitting is considered as a promising method of transforming solar energy into chemical energy stored in the type of hydrogen. An n-type $WO_3$ semiconductor is one of the most promising photoanodes for hydrogen production from water splitting. Films annealed at lower temperatures consisted of amorphous, whereas films annealed above $500^{\circ}C$ comprised solely of monoclinic $WO_3$. In this study, we observed photoactivity of $WO_3$ as increasing thickness of $WO_3$. And it shows good photoacivity as thickness increases. Also we tried to improve photoactivity through surface modification and bulk modification by using hydrogen treatment and conducting polymer. The photocurrent was measured in potentiostatic method with the three electrode system. A Pt wire and Ag / AgCl electrode were used as the counter electrode and the reference electrode, respectively. photocurrent-time (I-T) curve was measured at a bias potential of 0.79 V.

  • PDF

Particle Size and Reaction Temperature Effects on the Hydrolysis Reaction of Zinc in TGA (Thermo Gravimetric Analyzer) (열 중량 분석기에서 zinc 입자 크기와 반응 온도에 따른 물 분해 특성 연구)

  • Ahn, Seung-Hyuck;Kang, Kyoung-Soo;Kim, Chang-Hee;Bae, Ki-Kwang;Kim, Young-Ho;Park, Chu-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.4
    • /
    • pp.305-312
    • /
    • 2008
  • ZnO/Zn redox cycle is the one of the promising thermochemical cycles for hydrogen production via water splitting with high temperature heat source like a concentrated solar energy. This paper reports the particle size effect of Zinc on water splitting behavior. Water splitting reaction experiments were carried out at isothermal conditions of 350 and 400$^{\circ}C$ in TGA (Thermo Gravimetric Analyzer) using four commercial Zinc powders (nano, <10 ${\mu}m$, <150 ${\mu}m$ and $150{\sim}600\;{\mu}m$ particle sizes). Before the experiments, average particle size of Zinc powders was analyzed by PSA (Particle Size Analysis). After the experiments, XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) analyses were conducted on the samples. The experimental results showed that particle size had a effect on the conversion of Zinc to ZnO. Zinc conversion was increased, as the particle size decreased. Especially, the nano size particles were aggregated and the particle's morphology changed on the surface during hydrolysis reaction.

Photoelectrochemical Hydrogen Production on Textured Silicon Photocathode

  • Oh, Il-Whan
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.191-195
    • /
    • 2011
  • Wet chemical etching methods were utilized to conduct Si surface texturing, which could enhance photoelectrochemical hydrogen generation rate. Two different etching methods tested, which were anisotropic metal-catalyzed electroless etching and isotropic etching. The Si nano-texture that was fabricated by the anisotropic etching showed ~25% increase in photocurrent for H2 generation. The photocurrent enhancement was attributed to the reduced reflection loss at the nano-textured Si surface, which provided a layer of intermediate density between water and the Si substrate.