DOI QR코드

DOI QR Code

Photoelectrochemical Water Splitting Using GaN

GaN를 이용한 광전기화학적 물분해

  • Oh, Ilwhan (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • 오일환 (금오공과대학교 응용화학과)
  • Received : 2014.01.27
  • Accepted : 2014.02.15
  • Published : 2014.02.28

Abstract

This review article summarizes photoelectrochemical water splitting using gallium nitride (GaN). GaN materials have been studied as novel photoelectrode material due to its chemical stability and easy band gap engineering. Unlike other semiconductor materials that are easily corroded in strongly acidic or alkaline electrolyte, n-type GaN is chemically stable enough to be used as photoanode in oxygen evolution reaction. Furthermore, studies on p-type GaN have been recently reported. This review briefly discusses problems that need to be solved before GaN materials find widespread use in solar fuel application.

본 총설은 질화 갈륨(GaN)을 이용한 광전기화학적 물분해 연구에 대해 정리하였다. GaN는 화학적으로 안정하고 에너지 띠간격 조절이 자유롭다는 장점으로 최근 물분해를 위한 새로운 광전극 물질로 연구되고 있다. 다른 화합물 반도체 물질은 강산 혹은 강염기 전해액에 의해 쉽게 부식되기 때문에 광산화전극(photoanode)으로는 사용이 어려운 반면, n형 GaN는 뛰어난 안정성 덕분에 산화 분위기의 산소 발생 전극으로도 활용이 가능하다. 또한, 최근에는 p형 GaN을 환원전극으로 이용한 광전극에 대한 연구도 보고되었다. GaN 물질이 실제 응용되기 위해 필요한 과제들에 대해 다루었다.

Keywords

References

  1. J. A. Turner, 'Sustainable Hydrogen Production' Science, 305, 972 (2004). https://doi.org/10.1126/science.1103197
  2. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, 'Solar Water Splitting Cells' Chem. Rev., 110, 6446 (2010). https://doi.org/10.1021/cr1002326
  3. A. Fujishima, K. Honda, 'Electrochemical photolysis of water at a semiconductor electrode' Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  4. K. Fujii, T. Karasawa, K. Ohkawa, 'Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation' Jap. J. Appl. Phys., 44, L543 (2005). https://doi.org/10.1143/JJAP.44.L543
  5. K. Fujii, K. Ohkawa, 'Hydrogen generation from aqueous water using n-GaN by photoassisted electrolysis' physica status solidi (c), 3, 2270 (2006). https://doi.org/10.1002/pssc.200565171
  6. K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, K. Ohkawa, 'Band-edge energies and photoelectrochemical properties of n-type Al(x)Ga(1-x)N and In(y)Ga(1-y)N alloys' J. Electrochem. Soc., 154, B175 (2007). https://doi.org/10.1149/1.2402104
  7. J. Li, J. Y. Lin, H. X. Jiang, 'Direct hydrogen gas generation by using InGaN epilayers as working electrodes' Appl. Phys. Lett., 93, 162107 (2008). https://doi.org/10.1063/1.3006332
  8. S.-Y. Liu, J. K. Sheu, C.-K. Tseng, J.-C. Ye, K. H. Chang, M. L. Lee, W. C. Lai, 'Improved Hydrogen Gas Generation Rate of n-GaN Photoelectrode with SiO2 Protection Layer on the Ohmic Contacts from the Electrolyte' J. Electrochem. Soc., 157, B266 (2010). https://doi.org/10.1149/1.3270485
  9. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura, 'Direct water photoelectrolysis with patterned n-GaN' Appl. Phys. Lett., 91, 193519 (2007).
  10. B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, Z. Mi, 'High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode' Nanotechnology, 24, 175401 (2013). https://doi.org/10.1088/0957-4484/24/17/175401
  11. S.-Y. Liu, J. Sheu, M. Lee, Y.-C. Lin, S. Tu, F. Huang, W. Lai, 'Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation' Optics Express, 20, A190 (2012). https://doi.org/10.1364/OE.20.00A190
  12. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, H. X. Jiang, 'Hydrogen generation by solar water splitting using p- InGaN photoelectrochemical cells' Appl. Phys. Lett., 96, 052110 (2010). https://doi.org/10.1063/1.3304786
  13. N. Arai, N. Saito, H. Nishiyama, K. Domen, H. Kobayashi, K. Sato, Y. Inoue, 'Effects of divalent metal ion ($Mg^{2+}$, $Zn^{2+}$ and $Be^{2+}$) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting' Catalysis Today, 129, 407 (2007). https://doi.org/10.1016/j.cattod.2006.08.072
  14. N. Arai, N. Saito, H. Nishiyama, Y. Inoue, K. Domen, K. Sato, 'Overall water splitting by RuO2-dispersed divalent-ion-doped GaN photocatalysts with d(10) electronic configuration' Chem. Lett., 35, 796 (2006). https://doi.org/10.1246/cl.2006.796
  15. K. Maeda, K. Domen, 'Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light' Chem. Mat., 22, 612 (2010). https://doi.org/10.1021/cm901917a
  16. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, 'GaN : ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting' J. Am. Chem. Soc., 127, 8286 (2005). https://doi.org/10.1021/ja0518777
  17. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, 'Photocatalyst releasing hydrogen from water' Nature, 440, 295 (2006). https://doi.org/10.1038/440295a
  18. B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, Z. Mi, 'Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode' Nano Letters, 13, 4356 (2013). https://doi.org/10.1021/nl402156e
  19. D. F. Wang, A. Pierre, M. G. Kibria, K. Cui, X. G. Han, K. H. Bevan, H. Guo, S. Paradis, A. R. Hakima, Z. T. Mi, 'Wafer-Level Photocatalytic Water Splitting on GaN Nanowire Arrays Grown by Molecular Beam Epitaxy' Nano Letters, 11, 2353 (2006).
  20. I. Oh, 'Silicon Nanostructures Fabricated by Metal-Assisted Chemical Etching of Silicon' J. Korean Electrochem. Soc., 16, 1 (2013). https://doi.org/10.5229/JKES.2013.16.1.1
  21. Hyun Sik Kim, Sang Kwon Lee, Soon Hyung Kang, 'Preparation and Photoelectrochemical Behavior of $Cu_2O/TiO_2$ Inverse Opal Heterojunction Arrays' J. Korean Electrochem. Soc., 15, 149 (2012). https://doi.org/10.5229/JKES.2012.15.3.149

Cited by

  1. Structural and Electrochemical Properties of Ba-doped Li[Ni0.5Mn1.5]O4 Electrode Synthesized by Co-precipitation for 5.0V Lithium-Ion Batteries vol.74, pp.2, 2019, https://doi.org/10.3938/jkps.74.201