DOI QR코드

DOI QR Code

Photoelectrochemical Hydrogen Production on Textured Silicon Photocathode

  • Received : 2011.10.19
  • Accepted : 2011.10.24
  • Published : 2011.11.30

Abstract

Wet chemical etching methods were utilized to conduct Si surface texturing, which could enhance photoelectrochemical hydrogen generation rate. Two different etching methods tested, which were anisotropic metal-catalyzed electroless etching and isotropic etching. The Si nano-texture that was fabricated by the anisotropic etching showed ~25% increase in photocurrent for H2 generation. The photocurrent enhancement was attributed to the reduced reflection loss at the nano-textured Si surface, which provided a layer of intermediate density between water and the Si substrate.

Keywords

References

  1. J. A. Turner, 'Sustainable Hydrogen Production', Science, 305, 972, (2004). https://doi.org/10.1126/science.1103197
  2. A. Heller, 'Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells', Acc. Chem. Res., 14, 154, (1981). https://doi.org/10.1021/ar00065a004
  3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, 'Solar Water Splitting Cells', Chem. Rev., 110, 6446, (2010). https://doi.org/10.1021/cr1002326
  4. A. J. Bard and M. A. Fox, 'Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen', Acc. Chem. Res., 28, 141, (1995). https://doi.org/10.1021/ar00051a007
  5. A. Luque and S. Hegedus, Eds., Handbook of photovoltaic science and engineering, John Wiley & Sons, West Sussex, (2003).
  6. D. C. Bookbinder, N. S. Lewis, M. G. Bradley, A. B. Bocarsly, and M. S. Wrighton, 'Photoelectrochemical reduction of N,N'-dimethyl-4,4'-bipyridinium in aqueous media at p-type silicon: sustained photogeneration of a species capable of evolving hydrogen', J. Am. Chem. Soc., 101, 7721, (1979). https://doi.org/10.1021/ja00520a019
  7. A. B. Bocarsly, D. C. Bookbinder, R. N. Dominey, N. S. Lewis, and M. S. Wrighton, 'Photoreduction at illuminated p-type semiconducting silicon photoelectrodes. Evidence for fermi level pinning', J. Am. Chem. Soc., 102, 3683, (1980). https://doi.org/10.1021/ja00531a003
  8. D. C. Bookbinder, J. A. Bruce, R. N. Dominey, N. S. Lewis, and M. S. Wrighton, 'Synthesis and characterization of a photosensitive interface for hydrogen generation: Chemically modified p-type semiconducting photocathodes', Proc. Nat. Acad. Sci., 77, 6280, (1980). https://doi.org/10.1073/pnas.77.11.6280
  9. Y. Nakato, Y. Egi, M. Hiramoto, and H. Tsubomura, 'Hydrogen evolution and iodine reduction on an illuminated n-p junction silicon electrode and its application to efficient solar photoelectrolysis of hydrogen iodide', J. Phys. Chem., 88, 4218, (1984). https://doi.org/10.1021/j150663a006
  10. S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, 'Energyconversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes', Science, 327, 185, (2010). https://doi.org/10.1126/science.1180783
  11. J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, 'Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting', Ener. Env. Sci., 4, 1690, (2011). https://doi.org/10.1039/c1ee01124c
  12. P. Campbell and M. A. Green, 'Light trapping properties of pyramidally textured surfaces', J. App. Phys., 62, 243, (1987). https://doi.org/10.1063/1.339189
  13. B. Gonzalez-Diaz, R. Guerrero-Lemus, B. Diaz-Herrera, N. Marrero, J. Mendez-Ramos, and D. Borchert, 'Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/$HNO_{3}$ concentrations', Mat. Sci. Eng.: B, 159-160, 295, (2009). https://doi.org/10.1016/j.mseb.2008.11.003
  14. K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, 'Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication', Sol. Ener. Mat. Sol. Cells, 92, 960, (2008). https://doi.org/10.1016/j.solmat.2008.02.036
  15. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, 'Enhanced thermoelectric performance of rough silicon nanowires', Nature, 451, 163, (2008). https://doi.org/10.1038/nature06381
  16. A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. Yang, 'Single Crystalline Mesoporous Silicon Nanowires', Nano Lett., 9, 3550, (2009). https://doi.org/10.1021/nl9017594
  17. K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, 'Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry', Adv. Mat., 14, 1164, (2002). https://doi.org/10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E
  18. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, and X. Duan, 'Electrically Conductive and Optically Active Porous Silicon Nanowires', Nano Lett., 9, 4539, (2009). https://doi.org/10.1021/nl903030h
  19. M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, and N.-B. Wong, 'Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching', J.Phys. Chem. C, 112, 4444, (2008). https://doi.org/10.1021/jp077053o
  20. X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, and X. Duan, 'Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires', ACS App. Mat. Inter., 3, 261, (2011). https://doi.org/10.1021/am1009056

Cited by

  1. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes vol.9, pp.12, 2016, https://doi.org/10.3390/en9050373
  2. Nanostructured silicon photoelectrodes for solar water electrolysis vol.17, 2015, https://doi.org/10.1016/j.nanoen.2015.08.022