• Title/Summary/Keyword: Solar thermal facility

Search Result 40, Processing Time 0.022 seconds

An Analysis of Shortened Experiments for Environmental Chamber

  • Choi, Sang-Hyun;Bai, Cheol-Ho;Chung, Mo;Kyung, Nam-Bo;Suh, Hang-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.18-26
    • /
    • 2001
  • Environmental chamber (EC) is an experimental facility used to analyze the characteristics of thermal response of testing objects by the artificial control of weather conditions. The EC in KIFR can simulate the weather conditions by the control of temperature, humidity, and solar radiation. A two-storied testing building is located inside EC. For the exact thermal response analysis of testing building, monthly or yearly scheduled operations are necessary. Although this long term operation gives the exact experimental data, it requires a high operational cost, long duration, and lots of manpower. Therefore it is necessary to perform the shortened experiments without sacrificing the validity of the obtained results. Since the characteristics of thermal response from the shortened experiments are different from the full time results, the analytical method to analyze the thermal response from the shortened experiments to estimate a full times results is developed in this study The thermal response of testing building is performed using commercial software TRNSYS.

  • PDF

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

Development of 10 kW Dish-Stirling System for Commercialization and Analysis of Operating Characteristics (10 kW급 접시형 태양열발전시스템 사업모델 개발 및 운전특성 분석)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.118-124
    • /
    • 2010
  • In order to develop commercial model of 10kW dish-Stirling solar thermal power system, modification for the exiting facility was taken for a year as a Leading Project in KIER. During the project, solar tracking system, control and monitoring system and high durability reflector were developed and long term operation were performed. The solar tracking system was tested for four months to investigate the degree of precision and adapted to the control system for an actual operation from October in 2009. The sun tracking accuracy of ${\pm}4$ mrad using modified control system was obtained and the system operated successfully during the experimental period. The monitoring system displays engine pressure, electric generation amounts, generator RPM, receiver temperatures, and etc. from Stirling engine and weather data of Direct Normal Irradiation, Horizontal Global Insolation, wind speed & direction, and atmosphere temperature from weather station. According to the operating results in a clear sky day, electric power of 6,890 W was generated at the DNI value of 850 W/$m^2$ and the averaged solar-to-electricity efficiency during a whole day reached to 18.99%. From the overall operating results, linear power generation trend could be observed with increasing DNI value. The solar-to-electricity efficiency achieved to 19% around the DNI value of 700 W/$m^2$ and increased to 20% when the DNI value goes up to 900 W/$m^2$.

A study on the Thermal Environment of Open Spaces on Campus during Summer (대학(大學) 캠퍼스내(內) 야외공간(野外空間)의 여름철 미기후(微氣候)에 관한 연구(硏究))

  • Suh, Eung-Chul
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.7 no.2
    • /
    • pp.15-21
    • /
    • 2000
  • Microclimate of open spaces on campus tends to be important because it is related with people's comfort and it can influences their behaviors in outdoor during summer. Climatic components for 4 points, concrete paving, lawn, landscaped pergola and nearby forest on university campus were measured and evaluated. The results show that the air temperatures on paving such as concrete and lawn under the direct solar radiation were higher than the temperatures of canopied spaces such as pergora and nearby forest by up to $7^{\circ}C$ during summer. Characteristics of temperatures on lawn were similar to those on concrete paving. After evaluation, concrete surface was worst among 4 points, while landscaped pergola was the most effective facility in terms of thermal comfort during summer.

  • PDF

An Experimental Study of 30CMM Solar Transpired Collector and Cyclone(STCC) System on Indoor Air Dust Removal Performance (30CMM급 태양기공 전기집진 설비의 실내분진 정화 능력에 관한 실험연구)

  • Noh, Ji-Hee;Park, Sang-Hyun;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.37-45
    • /
    • 2005
  • Higher requirement of advanced building design code and the development of construction technique have resulted in more thermal and air tight buildings. This has caused the sick building syndrome in a indoor air quality has been relatively getting worse. A new concept with a solar fresh air heating and electrostatic precipitator or called as STCC(Solar Transpired Collector and Cyclone) has been proposed to solve this IAQ issue. This paper describes the assessment study of STCC system under different outdoor airflow rates. The experiment was carried out under real condition with 30CMM STCC system test facility. Incense smoke was used to study the particle concentration decay trends under outdoor airflow rates 0CMM, 10CMM, 20CMM, 30CMM, with applied voltages of 5kV and 15kV for collecting and discharging electrodes of an Electrostatic Precipitator. Result shows that the particle decay increases by increasing the outdoor airflow rates. The collection efficiency, dust cleaning effectiveness(P) and application area calculation result comparisons have also been studied. This factors could be used to estimate how a dust of indoor air quality(IAQ) and removed for a building space with a STCC system.

Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC (유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.

An inquiry into the distribution and application plan of new-renewable energy in Military facilities (군 시설 신재생에너지 보급동향과 적용방향 고찰)

  • Kim, Chul;Kyung, Seo-Kyung;Cho, Woo-Seok;Oh, Myung-Won;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.269-276
    • /
    • 2009
  • South Korea having military power within the $10^{th}$ in world ranking is the biggest single institution among public institutions in Korea and comprises force of over seven hundred thousand soldiers. However, outworn equipments and efficiency problem have issued. So, this study is to search the distribution state of new-renewable energy and to analyze application plan on the basis of interview with a official in charge in military. Analysis process is the first, classify surveyed military facilities into troops and the geographical factor. Second, classify a scale and type of facilities that new-renewable energy is supplied. Third, find consideration facts on the basis of interview with a official in charge. On the results of the survey, new-renewable energy applied to the military facility is photovoltaic, solar heat, wind power and geo-thermal energy. Also, divide military into the army, navy, air force and marine, visit 14 units and analyze the official's opinion. This study will deduce LCCA(Life cycle cost analysis) considered expenses for the installation and maintenance, and will be basic research that suggest an appropriate new-renewable energy model in military.

  • PDF

Performance Improvement of an Air Source Heat Pump by Storage of Surplus Solar Energy in Greenhouse (온실 내 잉여 태양열을 이용한 공기열원 히트펌프 성능향상)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Kang, Youn Ku;Kim, Chung Kil;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.328-334
    • /
    • 2013
  • A greenhouse heating system to improve heat pump performance using inside and outside air of greenhouse as a heat source selectively and cut $CO_2$ enrichment costs by delay of greenhouse ventilation was developed. In this system, thermal storage modes divided into inside circulation mode using surplus solar energy and outside circulation mode using outside air heat. The thermal storage modes were designed to be switched mutually according to inside greenhouse temperature and six temperature values were input to control the heat pump operating, thermal storage mode switching and greenhouse heating automatically. Operating characteristics of this system were tested in a plastic greenhouse of non-ventilation condition. The results of test showed that the inside circulation mode began at about 11:00 and lasted for about 210 minutes and inside greenhouse temperature was maintained between $20{\sim}28^{\circ}C$ in spite of non-ventilation. System heating COP of the inside circulation mode in the daytime was 3.35, which was 36% and 25% higher than that of the outside circulation modes in the nighttime and daytime respectively.

A study on public design convergence for eco-friendly playing equipment (친환경 놀이기구의 융복합 공공디자인 연구)

  • Park, Gun-Kyu;Kim, Won-seok;Kim, Sungn-min
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.407-412
    • /
    • 2016
  • The design in this study containing a consideration of children's free fantasy and experiential acquisition, is convergence in terms of its external use of Solar thermal energy and human friendly software, and is about public design based on eco-friendly playing equipments. Despite several flaws, the modularized solar-light power generation equipment is suitable for realizing the concept of the relationship between the Sun and the life thanks to its being versatile. Playing is equivalent to the world for children in itself, therefore; it should be something flexible to stimulate their fantasy and I imagined the sun, which should be something more than a mere source of power generation, and the children interact with each other by the medium of this equipment.

Design and Evaluation of Small-scale Supercritical Carbon Dioxide System with Solar Heat Source (태양열 적용을 위한 소형 초임계 이산화탄소 실험설비 설계 및 평가)

  • Choi, Hundong;So, Wonho;Lee, Jeongmin;Cho, Kyungchan;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • This paper focuses on the design of a 12-kW small-scale supercritical CO2 test loop. A theoretical study, stabilization, and optimization of carbon dioxide were carried out with the application of a solar heat source based on solar thermal data in Pohang. The thermodynamic cycle of the test facility is a Rankine cycle (transcritical cycle), which contains liquid, gas, and supercritical CO2. The system is designed to achieve 6.98% efficiency at a maximum pressure of 12 MPa and a maximum temperature of 70℃. In addition, the optimum turbine inlet temperature and pressure were calculated to increase the cycle efficiency, and the application of an internal heat exchanger (IHX) was simulated. It was found that the maximum efficiency increases to 18.75%. The simulation confirmed that the efficiency of the cycle is 6.7% in May and 6.26% in June.