• Title/Summary/Keyword: Solar modules

Search Result 397, Processing Time 0.025 seconds

Generation characteristics of transparent BIPV module according to temperature change (건물일체형 투명 모듈의 온도 변화에 따른 발전 특성)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;Yu, Gwon-Jong;Jang, Dae-Ho;Lee, Moon-Hee;Kim, Jun-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.210-211
    • /
    • 2007
  • Amid booming PV(photovoltaic) industry, BIPV(Building Integrated PV) is one of the best fascinating PV application technologies. To apply PV in building, variable factors should be reflected such as installation position, shading, temperature effect and so on. Especially a temperature should be considered, for it affects both electrical efficiency of PV module and heating and cooling load in building. Transparent PV modules were designed as finished material for spandrels are presented in this paper. The temperature variation of the modules with and without air gap and insulation were compared and analyzed. The results showed that the module with air gap and insulation has a much larger temperature variation than another transparent module. The temperature of the module reached by 55degree C under vertical irradiance of lower 500$W/m^2$. And the temperature difference between these modules was about 15degree C. To analyze the output performance of module according to temperature variation, separate module was manufactured and measured by sun-simulator. The results showed that 1 degree temperature rise reduced about 0.45% of output power.

  • PDF

A Study on the Output Power of Shingled Mini Module Depending on Reflectance of Backsheets (Backsheet 반사율에 따른 Shingled Mini Module 출력변화에 대한 연구)

  • Cho, Seong Hyeon;Moon, Ji Yeon;Son, Hyoung Jin;Jun, Da Yeong;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.129-133
    • /
    • 2020
  • It is very important to optimize the reflectance of incident light in solar modules for improving output power and reducing loss of cell-to-module (CTM). It is assumed that a higher reflectance backsheet may improve optical efficiency. However how much output power is related to optical properties by reflectance property of backsheets have not been revealed clearly yet. A total of 3 types of industrial backsheets with 3 type of industrial encapsulants (EVA or POE) were analyzed as fabricated mini modules used shingled cells. According to the type of backsheets, the difference between the highest and lowest average reflectance in the range of 400 nm to 1200 nm was found to be 13.08% by UV-visible spectroscopy. Also, when using the same encapsulant, the maximum gap value of the output power increase was measured by about 3.755 mW% (166.02 mW). The correlation between reflectance and output power was experimentally found by measuring the output property of the fabricated shingled mini modules.

The Analysis on Maximum Output Power Characteristics of Crystalline Silicon Photovoltaic Module by Change of Environmental Effects (환경변화 요인에 따른 결정질 실리콘 태양전지모듈의 최대출력 특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.23-28
    • /
    • 2007
  • In this study, we analyzed the maximum output power characteristics of crystalline silicon photovoltaic module by change of environmental effects. The electrical, optical and thermal property of PV modules were investigated during outdoor test period about 70 days. There was a fluctuation in maximum output power by change in transmittance caused by environment effects like rain, snow and dust. The effects of external environmental change were analyzed using climate data. Also local thermal temperature variation and transmittance imbalance on surface of PV module which might lead degradation of constituent material were detected using infrared camera. The further analysis is describe in the following paper.

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

A Study on the Real-Time Monitoring System of Wind Power in Jeju (제주지역 풍력발전량 실시간 감시 시스템 구축에 관한 연구)

  • Kim, Kyoung-Bo;Yang, Kyung-Bu;Park, Yun-Ho;Mun, Chang-Eun;Park, Jeong-Keun;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.25-32
    • /
    • 2010
  • A real-time monitoring system was developed for transfer, receive, backup and analysis of wind power data at three wind farm(Hang won, Hankyung and Sung san) in Jeju. For this monitoring system a communication system analysis, a collection of data and transmission module development, data base construction and data analysis and management module was developed, respectively. These modules deal with mechanical, electrical and environmental problem. Especially, time series graphic is supported by the data analysis and management module automatically. The time series graphic make easier to raw data analysis. Also, the real-time monitoring system is connected with wind power forecasting system through internet web for data transfer to wind power forecasting system's data base.

Light Scattering Effect of Incorporated PVP/Ag Nanoparticles on the Performance of Small-Molecule Organic Solar Cells

  • Heo, Il-Su;Park, Da-Som;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.221-221
    • /
    • 2012
  • Small-molecule organic photovoltaic cells have recently attracted growing attention due to their potential for the low-cost fabrication of flexible and lightweight solar modules. The PVP/Ag nanoparticles were synthesized by the reaction of poly vinylpyrrolidone (PVP) and silver nitrate at $150^{\circ}C$. In the reaction, the size of the nanoparticles was controlled by relative mole fractions between PVP and Ag. The PVP/Ag nanoparticles with various sizes were then spin coated on the patterned ITO glass prior to the deposition of the PEDOT:PSS hole transport layer. The scattering of the incident light caused by these incorporated nanoparticles resulted in an increase in the path length of the light through the active layer and hence the enhancement of the light absorption. This scattering effect increased as the size of the nanoparticles increased, but it was offset by the decrease in total transmittance caused by the non-transparent nanoparticles. As a result, the maximum power conversion efficiency, 0.96% which was the value enhanced by 14% compared to the cell without incorporation of nanoparticles, was obtained when the mole fraction of PVP:Ag was 24:1 and the size of the nanoparticles was 20~40 nm.

  • PDF

A simulation analysis of PV application method effect on electric power performance in an apartment wall facade (아파트 입면형 PV적용방식의 발전성능효과해석 연구)

  • Seo, Jung-Hun;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • The objective of this study is to investigate the effect of building integrated PV application method on power generation. PV modules were integrated to a hypothetical apartment building facade in Seoul, Korea. Three different design options of PV panel mounted on exterior wall were developed for the analysis of cooling effects through ventilation. Numerical simulations using TRNSYS coupled with COMIS were executed to evaluate the design options. Their facade configurations are such as vertically installed PV panels with or without air gap between PV rear surface and exterior wall surface, and the tilted PV panels attached to the exterior wall at an angle of to the horizontal. Parametric results show that there is little difference regardless of the air 9ap width between PV rear surface and exterior wall surface. Special strategies which could effectively cool a PV panel to increase the electric power are required if we prefer to a vertical facade configuration in a building integrated PV installation. Consequently, it is expected that there is no reason for architect to install vertically PV panels with air gap unless active strategies are considered.

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

Prediction and Analysis of Photovoltaic Modules's Output using MATLAB (MATLAB을 이용한 태양광 모듈의 출력 예측 및 해석)

  • Heo, Yun-Seok;Kim, Jae-Gyu;Kim, Ji-Man;Kwon, Bo-Min;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2963-2967
    • /
    • 2010
  • In this paper, we have predicted and analyzed the MSX 60 photovoltaic module's output according to the temperature and solar radiation conditions by MATLAB program. 2 and 3-dimensional I-V curves of the PV module considered temperature, series resistance and solar radiation variation. are shown. Also, calculated PV's electrical parameters are Isc = 3.8 A, Voc = 21 V, Pmax = 60 W. Compared with the actual photovoltaic module's data, these simulated results agreed well with within the manufacturer's maximum error range 3%.

Comparison of maximum generated power by shading effect and PV array configurations (그림자 영향과 태양광 어레이 구조에 따른 최대발생전력 비교 해석 및 실험)

  • Kim, Eui-Jong;Yu, Byung-Gyu;Cha, Han-Ju;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.8-13
    • /
    • 2009
  • In this paper, two configurations of PV array are analyzed and tested under shading condition, where two configurations are series-parallel and total-crass-tied configuration. Each photovoltaic module is emulated by two 5 inch po1y-crystalline cells in series and an array is constructed by connecting 24 of the modules to compare a generated maximum power of the two configurations. Pspice and Sun simulator. PASAN IIIb, are used for simulation and experiment to test the array under various partial shading conditions. Test results show the total-cross-tied configuration generates 7.63% higher maximum power than the series-parallel configuration, and it is well matched to the analysis and simulations of the two configurations.