• Title/Summary/Keyword: Solar Wafer

Search Result 281, Processing Time 0.026 seconds

Properties of Silicon Nitride Deposited by RF-PECVD for C-Si solar cell (결정질 실리콘 태양전지를 위한 실리콘 질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Song, Hee-Eun;Kang, Min-Gu;Kang, Gi-Hwan;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • Silicon nitride($SiN_x:H$) deposited by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) is commonly used for anti-reflection coating and passivation in crystalline silicon solar cell fabrication. In this paper, characteristics of the deposited silicon nitride was studied with change of working pressure, deposition temperature, gas ratio of $NH_3$ and $SiH_4$, and RF power during deposition. The deposition rate, refractive index and effective lifetime were analyzed. The (100) p-type silicon wafers with one-side polished, $660-690{\mu}m$, and resistivity $1-10{\Omega}{\cdot}cm$ were used. As a result, when the working pressure increased, the deposition rate of SiNx was increased while the effective life time for the $SiN_x$-deposited wafer was decreased. The result regarding deposition temperature, gas ratio and RF power changes would be explained in detail below. In this paper, the optimized condition in silicon nitride deposition for silicon solar cell was obtained as 1.0 Torr for the working pressure, $400^{\circ}C$ for deposition temperature, 500 W for RF power and 0.88 for $NH_3/SiH_4$ gas ratio. The silicon nitride layer deposited in this condition showed the effective life time of > $1400{\mu}s$ and the surface recombination rate of 25 cm/s. The crystalline silicon solar cell fabricated with this SiNx coating showed 18.1% conversion efficiency.

Optimization of Drive-in Process with Various Times and Temperatures in Crystalline Silicon Solar Cell Fabrication (결정질 실리콘 태양전지 도핑 확산 공정에서 시간과 온도 변화에 의한 Drive-in 공정 연구)

  • Lee, Hee-Jun;Choi, Sung-Jin;Myoung, Jae-Min;Song, Hee-Eun;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.51-55
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with 156 ${\times}$ 156 mm2 area was studied. To optimize the drive-in condition in the doping process, the other conditions except drive-in temperature and time were fixed. After etching 7 ${\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80 nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in $400-425-450-550-850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $828^{\circ}C$ to $860^{\circ}C$ and time was from 3 min to 40 min. The sheet resistance of wafer was fixed to avoid its effect on solar cell. The solar cell fabricated with various conditions showed the similar conversion efficiency of 17.4%. This experimental result showed the drive-in temperatures and times little influence on solar cell characteristics.

  • PDF

Influence of the Amount of Conductive Paste on the Electrical Characteristics of c-Si Photovoltaic Module (전도성 페이스트 도포량 변화에 따른 결정질 태양광 모듈의 전기적 특성에 대한 영향성 분석)

  • Kim, Yong Sung;Lim, Jong Rok;Shin, Woo Gyun;Ko, Suk-Whan;Ju, Young-Chul;Hwang, Hye Mi;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.720-726
    • /
    • 2019
  • Recently, research on cost reduction and efficiency improvement of crystalline silicon(c-Si) photovoltaic(PV) module has been conducted. In order to reduce costs, the thickness of solar cell wafers is becoming thinner. If the thickness of the wafer is reduced, cracking of wafer may occur in high temperature processes during the c-Si PV module manufacturing process. To solve this problem, a low temperature process has been proposed. Conductive paste(CP) is used for low temperature processing; it contains Sn57.6Bi0.4Ag component and can be electrically combined with solar cells and ribbons at a melting point of $150^{\circ}C$. Use of CP in the PV module manufacturing process can minimize cracks of solar cells. When CP is applied to solar cells, the output varies with the amount of CP, and so the optimum amount of CP must be found. In this paper, in order to find the optimal CP application amount, we manufactured several c-Si PV modules with different CP amounts. The amount control of CP is fixed at air pressure (500 kPa) and nozzle diameter 22G(outer diameter 0.72Ø, inner 0.42Ø) of dispenser; only speed is controlled. The c-Si PV module output is measured to analyze the difference according to the amount of CP and analyzed by optical microscope and Alpha-step. As the result, the optimum amount of CP is 0.452 ~ 0.544 g on solar cells.

Study of Low Reflectance and RF Frequency by Rie Surface Texture Process in Multi Crystall Silicon Solar Cells (공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구)

  • Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Young;Kim, Joung-Sik;Kang, Hyoung-Dong;Yi, Jun-Sin;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.114-120
    • /
    • 2010
  • Conventional surface texturing in crystalline silicon solar cell have been use wet texturing by Alkali or Acid solution. But conventional wet texturing has the serious issue of wafer breakage by large consumption of wafer in wet solution and can not obtain the reflectance below 10% in multi crystalline silicon. Therefore it is focusing on RIE texturing, one method of dry etching. We developed large scale plasma RIE (Reactive Ion Etching) equipment which can accommodate 144 wafers (125 mm) in tray in order to provide surface texturing on the silicon wafer surface. Reflectance was controllable from 3% to 20% in crystalline silicon depending on the texture shape and height. We have achieved excellent reflectance below 4% on the weighted average (300~1,100 nm) in multi crystalline silicon using plasma texturing with gas mixture ratio such as $SF_6$, $Cl_2$, and $O_2$. The texture shape and height on the silicon wafer surface have an effect on gas chemistry, etching time, RF frequency, and so on. Excellent conversion efficiency of 16.1% is obtained in multi crystalline silicon by RIE process. In order to know the influence of RF frequency with 2 MHz and 13.56 MHz, texturing shape and conversion efficiency are compared and discussed mutually using RIE technology.

Development on New Laser Tabbing Process for Modulation of Thin Solar Cell (박형 태양 전지 모듈화를 위한 레이져 태빙 자동화 공정(장비) 개발)

  • No, Donghun;Choi, Chul-June;Cho, Hyun Young;Yu, Jae Min;Kim, JungKeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • In solar cell module manufacturing, single solar cells has to be joined electrically to strings. Copper stripes coated with tin-silver-copper alloy are joined on screen printed silver of solar cells which is called busbar. The bus bar collects the electrons generated in solar cell and it is connected to the next cell in the conventional module manufacturing by a metal stringer using conventional hot air or infrared lamp soldering systems. For thin solar cells, both soldering methods have disadvantages, which heats up the whole cell to high temperatures. Because of the different thermal expansion coefficient, mechanical stresses are induced in the solar cell. Recently, the trend of solar cell is toward thinner thickness below 180um and thus the risk of breakage of solar cells is increasing. This has led to the demand for new joining processes with high productivity and reduced error rates. In our project, we have developed a new method to solder solar cells with a laser heating source. The soldering process using diode laser with wavelength of 980nm was examined. The diode laser used has a maximum power of 60W and a scanner system is used to solder dimension of 6" solar cell and the beam travel speed is optimized. For clamping copper stripe to solar cell, zirconia(ZrO)coated iron pin-spring system is used to clamp both joining parts during a scanner system is traveled. The hot plate temperature that solar cell is positioned during lasersoldering process is optimized. Also, conventional solder joints after $180^{\circ}C$ peel tests are compared to the laser soldering methods. Microstructures in welded zone shows that the diffusion zone between solar cell and metal stripes is better formed than inIR soldering method. It is analyzed that the laser solder joints show no damages to the silicon wafer and no cracks beneath the contact. Peel strength between 4N and 5N are measured, with much shorter joining time than IR solder joints and it is shown that the use of laser soldering reduced the degree of bending of solar cell much less than IR soldering.

  • PDF

Amorphization of Silicon by 250 keV Electron Irradiation and Hydrogen Annealing

  • Jo Jung-Yol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.23-27
    • /
    • 2005
  • We observed that optical properties of silicon changed under high dose electron irradiation at 250 keV. Our experimental results revealed that the optical transmission through a silicon wafer is significantly increased by electron irradiation. Transmission increase by the change in the absorption coefficient is explained through an analogy with amorphous silicon. Moreover, solar cell open-circuit voltages indicated that defects were generated by electron irradiation, and that the defects responded to annealing. Our results demonstrated that the optical properties of silicon can be controlled by a combination of electron irradiation and hydrogen annealing.

In-situ Warpage Measurement Technique Using Impedance Variation (임피던스 변화를 이용한 실시간 기판 변형 측정)

  • Kim, Woo Jae;Shin, Gi Won;Kwon, Hee Tae;On, Bum Soo;Park, Yeon Su;Kim, Ji Hwan;Bang, In Young;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • The number of processes in the manufacture of semiconductors, displays and solar cells is increasing. And as the processes is performed, multiple layers of films and various patterns are formed on the wafer. At this time, substrate warpage occurs due to the difference in stress between each film and pattern formed on the wafer. the substrate warping phenomenon occurs due to the difference in stress between each film and pattern formed on the wafer. We developed a new warpage measurement method to measure wafer warpage during real-time processing. We performed an experiment to measure the presence and degree of warpage of the substrate in real time during the process by adding only measurement equipment for applying additional electrical signals to the existing ESC and detecting the change of the additional electric signal. The additional electrical measurement signal applied at this time is very small compared to the direct current (DC) power applied to the electrostatic chuck whit a frequency that is not generally used in the process can be selectively used. It was confirmed that the measurement of substrate warpage can be easily separated from other power sources without affecting.

Fabrication of Ozone Bubble Cleaning System and its Application to Clean Silicon Wafers of a Solar Cell

  • Yoon, J.K.;Lee, Sang Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.295-298
    • /
    • 2015
  • Ozone micro-bubble cleaning system was designed, and made to develop a unique technique to clean wafers by using ozone micro-bubbles. The ozone micro-bubble cleaning system consisted of loading, cleaning, rinsing, drying and un-loading zones, respectively. In case of the cleaning the silicon wafers of a solar cell, more than 99 % of cleaning efficiency was obtained by dipping the wafers at 10 ppm of ozone for 10 minutes. Both of long cleaning time and high ozone concentration in the wet-solution with ozone micro-bubbles reduced cleaning efficiency because of the re-sorption of debris. The cleaning technique by ozone micro-bubbles can be also applied to various wafers for an ingot and LED as an eco-friendly method.

$50{\mu}m$ 기판을 이용한 a-Si:H/c-Si 이종접합 태양전지 제조 및 특성분석

  • Jeong, Do-Gyeong;Kim, Ga-Yeong;Jeong, Dae-Yeong;Song, Jun-Yong;Kim, Gyeong-Min;Gu, Hye-Yeong;Song, Jin-Su;Lee, Jeong-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • 이종접합태양전지는 단결정 실리콘 기판 표면에 고품질 비정질 실리콘층을 적층함으로써 전기의 근원인 전하의 재결합 손실을 줄여 높은 개방전압을 얻을 수 있다는 특징이 있다. 초박형 태양전지는 기존 태양전지보다 뛰어난 광전변환 특성(Photovoltaic characteristic)을 가지고 두께가 얇아 제품 형상 시 자유도가 높아진다. 본 논문에서는 n-type Bare wafer($160{\sim}180{\mu}m$)를 이용하여 $50{\mu}m$의 웨이퍼를 제작하였다. a-Si:H(p)_a-Si:H(i)_c-Si(n)의 광흡수층 구조를 성막하여 cell을 제작하였다. 그 결과 Voc(Open Circuit Voltage)가 0.666, Jsc(Short-Circuit Current)가 34.77, FF(Fill Factor) 69.413, Efficency 16.07%를 달성했다.

  • PDF

A Study on the Cd S/(p) Si heterojunction Solar Cell (CdS/(P)Si 이종접합 태양전지에 관한연구)

  • 전춘생;전창식;윤문수;허창수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.2
    • /
    • pp.96-101
    • /
    • 1988
  • This work is concerned with the fabrication process and photo-response characteristics of Cd S/(p) Si solar cells. In order to fabricate the cell. low grade Si wafer has been used as an absorber and Cd S which works as a window material has been prepared by vacuum evaporation. Cd S thin film, as evaporated, is polycristal and resistance is very high but these properties are improved by annealing. The properties of the fabricated cells are found to depend largely on the transmittance of Cd S. The effects of Cd S thickness and annealing condition on the fill factor and efficiency of the cell are investigated quantitatively.

  • PDF