• 제목/요약/키워드: Solar Profile Angle

검색결과 9건 처리시간 0.021초

건물에서 태양 프로파일의 변화 특성을 고려한 블라인드 최적 제어 방안 (Optimum Blind Control Considering Characteristics of Solar Profile Angle Curve)

  • 성윤복
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.111-124
    • /
    • 2011
  • The objective of this study is to develop the blind control strategy and method which reduce negative effect of incoming daylight on visual comfort of occupants, minimize psychological anxieties caused by frequent motions of a blind, and maximize positive effect of incoming daylight by opening/closing of a blind. In previous researches on blind controls, major problem is that the time interval and amount of blind movement do not meet the control objective at the inflected zone of solar profile curve. To overcome these limitations revealed in theprevious researches, following tasks were performed in this study. i)To establish the control objective to accomplish the goal of this study. ii)To develop the control methods and algorithms which prevent glare on the work-plane at any time and which control the time interval and amount of blind movement to follow the control objective at various solar profile angle curves. This study proposed the control strategy and method that define the base control section implying the inflection point within the control objective zone and subsequently, divide the control sections for the residual time zones. The proposed strategy and method are found to increase the incoming daylight and solar irradiation by 0 to 15 %.

잠재적 시간 오차에 따른 현휘의 발생 방지를 위한 최적 블라인드 제어 (Optimum Blind Control to Prevent Glare Considering Potential Time Error)

  • 성윤복
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.74-86
    • /
    • 2012
  • For the improvement of environmental comfort in the buildings with the blind control, the objective of this study is to prevent the direct glare caused by the daylight inlet. During the process of solar profile prediction, time are significant factors that may cause error and glare during the blind control. This research proposes and evaluates the correction and control method to minimize prediction error. For the local areas with different longitude and local standard meridian, error occurred in the process of the time conversion from local standard time to apparent solar time. In order to correct error in time conversion, apparent solar time should be recalculated after adjusting the day of year and the equation of time. To solve the problems by the potential time errors, control method is suggested to divide the control sections using the calibrated fitting-curve and this method is verified through simulations. The proposed correction and control method, which considered potential time errors by loop lop leap years, could solve the problems about direct glare caused by daylight inlet on the work-plane according to the prediction errors of solar profile. And also these methods could maximize daylight inlet and solar heat gain, because the blocked area on windows could be minimized.

작업면 현휘 방지와 주광 및 일사 유입 최대화를 위한 제어 종료 영역에서의 최적 블라인드 제어 (Optimum Blind Control at the End of Operation Time Zone for Preventing Glare on Work-plane and Maximizing Daylight and Solar Heat Gain)

  • 성윤복;여명석;구소영;김광우
    • 한국주거학회논문집
    • /
    • 제23권1호
    • /
    • pp.27-41
    • /
    • 2012
  • The objective of this study is to develop the blind control strategy and method which reduce negative effect of incoming daylight on visual comfort of occupants, minimize psychological anxieties caused by frequent motions of a blind, and maximize positive effect of incoming daylight and solar irradiation by opening/closing of a blind. As previous researches on blind controls have limited outdoor environmental conditions to those in specific regions, orientations and dates, these resulted in problems at various conditions for general-purpose application. Major problem is that the time interval and amount of blind movement do not meet the control objective at the end of control zone and discontinuous curve. To overcome these limitations revealed in the previous researches, following tasks were performed in this study. 1) To establish the control objective to accomplish the goal of this study. 2) To develop the control methods and algorithms which prevent glare on the work-plane at any time and which control the time interval and amount of blind movement to follow the control objective at various profile angle curves. 3) To validate the general-purpose applicability and performance of the developed control methods and algorithms by simulation and its data analysis at various conditions. It was found that the proposed methods and algorithms can prevent the direct glare on the work-plane at all the time and also increase the incoming daylight and solar irradiation.

The Visual Performance Evaluation of the Work planes with the Automated blind Control in Small Office Spaces

  • Park, Doo-Yong;Yoon, Kap-Chun;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2014
  • Among the various building envelope elements, the glass area takes up the largest portion in the office building design. However, a large area of glass can cause problems such as excessive solar radiation, thermal comfort, and glare. Thus it is important to install the glass area to an appropriate level, and control solar radiation and inflow of daylight with blind devices. This study aims to improve the visual performance of the work plane through the automatic control of the venetian blinds. A total of eight kinds of control strategies were chosen; Case 1 does not control the blinds, Case 2 with the blind slats fixed at the angle of 0 degree, Case 3 to 6 using the existing blind control programs, and Case 7 and 8 with improved blind control. Case 3 with 90 degrees had the best energy performance, but the average indoor illuminance was 113lux, which is below the standards. Cases 4 and 5 showed higher levels of interior daylight illuminance with the average of 281lux and 403lux respectively. However, the fixed angles may have difficulties controlling excessive direct sunlight coming into the room and may cause glare. Cases 6 and 7 used sun tracking angle control and cut-off angle control, and the average interior illuminance was measured 250lux and 385lux respectively. Case 8 used the cut-off angle control in an hourly manner, satisfying the standard illuminance of 400lux with an average interior illuminance of 561lux. It was evaluated to be the best method to control direct solar radiation and to guarantee proper level of interior illumination.

광센서 조광제어시스템과 자동롤러쉐이딩 시스템을 위한 제어 소프트웨어 개발 (Development of Control Software for Daylight Responsive Dimming Systems and Automated Roller Shading Systems)

  • 홍성관;김유신;박병철;최안섭
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2008
  • The purpose of this study is to develop a control software for daylight responsive dimming systems and automated roller shading systems. Developed software in this study is to used determinate sky conditions, calculation of solar profile angle, control height of roller shade, calculation of dimming level(%) for daylight responsive dimming systems.

  • PDF

재실자 방해 최소화를 위한 자동 블라인드 제어 방안 (Automated Blind Control Strategy to Minimize Occupant's Distractions)

  • 구소영;여명석;성윤복;김광우
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.84-92
    • /
    • 2013
  • Blinds are a common type of shading device and are increasingly operated automatically to overcome the limitations of manual operation. Automated blinds need to be controlled to maximize benefits of daylight in the point of occupant comfort and energy consumption. However, the previous control methods could cause occupant's distractions by the undesirable control time interval and amount of blind movement. A few researches suggested the control concept for minimizing occupant's distractions by automatic blind control, but they did not provide optimal control algorithm to be useful in practice. In this paper, we propose an optimal control algorithm for automated blinds that can maximize not only visual comfort but also sunlight penetration into buildings based on occupants' preferences on blind movement and sunlight. The proposed control algorithm can prevent solar glare on workplane and minimize occupant's distractions to maximize occupants' visual comfort.

대기복사전달모델을 이용한 제주지역 도심 및 배경지점에서의 온실가스에 따른 복사강제력 영향 연구 (Influence of Greenhouse Gases on Radiative Forcing at Urban Center and Background Sites on Jeju Island Using the Atmospheric Radiative Transfer Model)

  • 이수정;송상근;한승범
    • 대기
    • /
    • 제27권4호
    • /
    • pp.423-433
    • /
    • 2017
  • The spatial and temporal variations in radiative forcing (RF) and mean temperature changes of greenhouse gases (GHGs), such as $CO_2$, $CH_4$, and $N_2O$, were analyzed at urban center (Yeon-dong) and background sites (Gosan) on Jeju Island during 2010~2015, based on a modeling approach (i.e., radiative transfer model). Overall, the RFs and mean temperature changes of $CO_2$ at Yeon-dong during most years (except for 2014) were estimated to be higher than those at Gosan. This might be possibly because of its higher concentrations at Yeon-dong due to relatively large energy consumption and small photosynthesis and also the difference in radiation flux due to the different input condition (e.g., local time and geographic coordinates of solar zenith angle) in the model. The annual mean RFs and temperature changes of $CO_2$ were highest in 2015 ($2.41Wm^{-2}$ and 1.76 K) at Yeon-dong and in 2013 ($2.22Wm^{-2}$ and 1.62 K) at Gosan (except for 2010 and 2011). The maximum monthly/seasonal mean RFs and temperature changes of $CO_2$ occurred in spring (Mar. and/or Apr.) or winter (Jan. and/or Feb.) at the two sites during the study period, whereas the minimum RFs and temperature changes in summer (Jun.-Aug.). In the case of $CH_4$ and $N_2O$, their impacts on the RF and mean temperature changes were very small (an order of magnitude lower) compared to $CO_2$. The spatio-temporal differences in these RF values of GHGs might primarily depend on the atmospheric profile (e.g., ozone profile), surface albedo, local time (or solar zenith angle), as well as their mass concentrations.

Search for the Comet Activity of 107P/(4015)Wilson-Harrington during 2009/2010 Apparition

  • Ishiguro, Masateru
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.52.2-52.2
    • /
    • 2010
  • 107P/(4015) Wilson-Harrington is one of possible candidates of the dormant or inactive comet nuclei. It was discovered on a photographic plate exposed with the 48-inch Schmidt at Palomar Observatory on 1949 November 19 UT, displaying the faint extended cometary tail. No comet activity has not been after 1949 apparition. Here we present the optical observations of 107P/(4015) Wilson - Harrington during 2009/2010 apparition taken in search of low-level comet activity. Our photometric and spectroscopic data were collected 28 - 86 days after the perihelion passage on 2009 October 22 in a wide range of solar phase angle of 39-68 degree. A disk-integrated phase function was constructed, giving a geometric albedo of 0.055+/-0.012, phase integral of q=0.34, and Bond albedo of A_B=0.019. The photometric property shows profile similar to low albedo asteroids and comet nuclei. Any emission lines were found in our spectrum, giving a flat reflectance similar to low albedo asteroids. Although we could not find any evidence for the comet activity in our photometric and spectroscopic data, we found an upper limit of the fractional active area of 0.001%. We derived the upper limit of the optical depth of the dust trail and tail 7x10^{-10}. We conclude that 107P/(4015)Wilson-Harrington became completely dormant or inactive in 2009/2010 return.

  • PDF

적외선 채널을 이용한 에어로솔 탐지의 경계값 및 민감도 분석 (Sensitivity Analysis of IR Aerosol Detection Algorithm)

  • 하종성;이현진;김재환
    • 대한원격탐사학회지
    • /
    • 제22권6호
    • /
    • pp.507-518
    • /
    • 2006
  • 지표면에서 방출된 $11{\mu}m$$12{\mu}m$의 복사량은 대기 입자에 의해 선택적으로 산란되고 흡수된다. 에어로솔이 대기 중에 존재할 경우 지표면에서 방출되는 $11{\mu}m$의 복사량이 $12{\mu}m$보다 흡수를 많이 하므로 밝기 온도가 낮게 나타나고, 반대로 구름에 대해서는 $12{\mu}m$가 흡수를 많이 하여 $11{\mu}m$의 밝기 온도가 높게 나타난다. 그러므로 $11{\mu}m$$12{\mu}m$의 밝기 온도 차이(BTD)를 통해 구름과 에어로솔의 존재 유무를 판별할 수 있고, 에어로솔의 광학 두께를 추정할 수 있다. 본 연구에서는 대기의 구성 물질과 연직 분포 상태, 지표면의 온도와 형태, 그리고 에어로솔의 구성성분에 따라 BTD 경계값과 민감도를 분석하였다. BTD 경계값은 이론적으로 $0^{\circ}K$라고 알려져 있으나 본 연구에서 US 표준 대기 상태일 때 $0.8^{\circ}K$의 경계값을 보인다. BTD 값은 태양 천정각, 에어로솔의 고도, 지표면 반사도, 그리고 대기의 연직적 온도 분포에 따라서는 영향을 적게 받았다. 그러나 위성 천정각, 지표면 온도와 방출율, 연직적 수증기 분포에 대해 영향이 크게 나타나며 에어로솔 탐지에 50%이상의 오차를 유발할 수도 있다. 그러므로 BTD 방법을 사용하는데 있어 주의가 요구되며, BTD값에 영향을 미치는 인자를 보정해 준다면 좀 더 정확한 에어로솔 탐지가 가능하리라 사료된다.