DOI QR코드

DOI QR Code

Sensitivity Analysis of IR Aerosol Detection Algorithm

적외선 채널을 이용한 에어로솔 탐지의 경계값 및 민감도 분석

  • Ha, Jong-Sung (Department of Atmospheric Science, Pusan National University) ;
  • Lee, Hyun-Jin (Department of Atmospheric Science, Pusan National University) ;
  • Kim, Jae-Hwan (Department of Atmospheric Science, Pusan National University)
  • Published : 2006.12.30

Abstract

The radiation at $11{\mu}m$ absorbed more than at $12{\mu}m$ when aerosols is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The difference of the two channels provides an opportunity to detect aerosols such as Yellow Sand even with the presence of clouds and at night. However problems associated with this approach arise because the difference can be affected by various atmospheric and surface conditions. In this paper, we has analyzed how the threshold and sensitivity of the brightness temperature difference between two channel (BTD) vary with respect to the conditions in detail. The important finding is that the threshold value for the BTD distinguishing between aerosols and cloud is $0.8^{\circ}K$ with the US standard atmosphere, which is greater than the typical value of $0^{\circ}K$. The threshold and sensitivity studies for the BTD show that solar zenith angle, aerosols altitude, surface reflectivity, and atmospheric temperature profile marginally affect the BTD. However, satellite zenith angle, surface temperature along with emissivity, and vertical profile of water vapor are strongly influencing on the BTD, which is as much as of about 50%. These results strongly suggest that the aerosol retrieval with the BTD method must be cautious and the outcomes must be carefully calibrated with respect to the sources of the error.

지표면에서 방출된 $11{\mu}m$$12{\mu}m$의 복사량은 대기 입자에 의해 선택적으로 산란되고 흡수된다. 에어로솔이 대기 중에 존재할 경우 지표면에서 방출되는 $11{\mu}m$의 복사량이 $12{\mu}m$보다 흡수를 많이 하므로 밝기 온도가 낮게 나타나고, 반대로 구름에 대해서는 $12{\mu}m$가 흡수를 많이 하여 $11{\mu}m$의 밝기 온도가 높게 나타난다. 그러므로 $11{\mu}m$$12{\mu}m$의 밝기 온도 차이(BTD)를 통해 구름과 에어로솔의 존재 유무를 판별할 수 있고, 에어로솔의 광학 두께를 추정할 수 있다. 본 연구에서는 대기의 구성 물질과 연직 분포 상태, 지표면의 온도와 형태, 그리고 에어로솔의 구성성분에 따라 BTD 경계값과 민감도를 분석하였다. BTD 경계값은 이론적으로 $0^{\circ}K$라고 알려져 있으나 본 연구에서 US 표준 대기 상태일 때 $0.8^{\circ}K$의 경계값을 보인다. BTD 값은 태양 천정각, 에어로솔의 고도, 지표면 반사도, 그리고 대기의 연직적 온도 분포에 따라서는 영향을 적게 받았다. 그러나 위성 천정각, 지표면 온도와 방출율, 연직적 수증기 분포에 대해 영향이 크게 나타나며 에어로솔 탐지에 50%이상의 오차를 유발할 수도 있다. 그러므로 BTD 방법을 사용하는데 있어 주의가 요구되며, BTD값에 영향을 미치는 인자를 보정해 준다면 좀 더 정확한 에어로솔 탐지가 가능하리라 사료된다.

Keywords

References

  1. 임영욱, 정 용, 1989. 호흡성 분진 중의 중금속 오염도에 관한 조사 연구. 한국대기보존학회지, 5(1): 68-78
  2. Ackerman, S. A., 1989. Using the Radiative Temperature Difference at 3.7 and 11${\mu}m$ to Track Dust Outbreaks. Remote Sens. Environ. 27: 129-133 https://doi.org/10.1016/0034-4257(89)90012-6
  3. Chun, Y., K. O. Boo, J. Kim, S-U. Park, and M. Lee, 2001. Synopsis, transport and physical characteristics of Asian dust in Korea, J. Geophys. Res., 106(D16): 18, 461-18, 469 https://doi.org/10.1029/2001JD900184
  4. Fukushima, H. and M. Toratani, 1997. Asian dust aerosol. Optical effect on satellite ocean color signal and a scheme of its correction, J. Geophys. Res., 102(D14): 17119-17130 https://doi.org/10.1029/96JD03747
  5. Gomes, L. and D. A. Gillette, 1993. A comparison of characteristics of aerosol from dust storms in central Asia with soil-derived dust from other regions. Atmos. Environ., 27A: 2539-2544
  6. Goudie, A. S., 1978. Dust storms and their geomorphological implications, J. Arid Environments, 1: 291-310
  7. Gu, Y., W. I. Rose, and G. J. S. Bluth. 2003. Retrieval of mass and sizes of particles in sandstorms using two MODIS IR bands. A case study of April 7, 2001 sandstorm in China. Geophys. Res. Lett. 30(15): doi.10.1029/2003GL017405
  8. Kaufman, Y. J., D. Tanre, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. N. Teillet, 1997. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, J. Geophys. Res., 102(D14): 16815-16830 https://doi.org/10.1029/97JD01496
  9. King, M. D., Y. J. Kaufman, D. Tanre, and T. Nakajima, 1999. Remote sensing of Tropospheric Aerosols from Space. Past, Presents, and Future, Bulletin of the American Meteorological Society, 80: 2229-2259 https://doi.org/10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
  10. Liu, C. and M. H. Smith, 1995. URBAN AND RURAL AEROSOL PARTICLE OPTICAL PROPERTIES. Atmos. Environ., 29(22): 3293-3301 https://doi.org/10.1016/1352-2310(95)00236-R
  11. McKendry, I. G., J. P. Hacker, R. Stull, S. Sakiyama, D. Mignacca, and K. Reid. 2001. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada, J. Geophys. Res., 106(D16): 18361-18370 https://doi.org/10.1029/2000JD900359
  12. Monn C. H., O. Braendli, G. Schaeppi, C. H. Schindler, U. Ackermann-Liebrich, P. H. Leuenberger, and Sapaldia Team, 1997. PARTICULATE MATTER < $10{\mu}m(PM_{10})$ AND TOTAL SUSPENDED PARTICULATES (TSP) IN URBAN, RURAL AND ALPINE AIR SWITZERLAND. Atmos. Environ., 29(19): 2565-2573 https://doi.org/10.1016/1352-2310(95)94999-U
  13. Prata, A. J., 1989. Observations of volcanic ash clouds in the 10-12 window using AVHRR/2 data, Int. J. Remote Sensing, 10: 751-761 https://doi.org/10.1080/01431168908903916
  14. Shaw, G. E., 1980. Transport of Asian desert aerosol to the Hawaiian island. J. Appl. Meteor., 19: 1254-1259 https://doi.org/10.1175/1520-0450(1980)019<1254:TOADAT>2.0.CO;2
  15. Snyder, W. C., Z. Wan, Y. Zhang, and Y. Z. Feng, 1998, Classification-based emissivity for land surface temperature measurement from space, Int. J. Remote Sening, 19: 2753-2774 https://doi.org/10.1080/014311698214497
  16. Sokolik, I. N., and O. B. Toon, 1998. Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths, J. Geophys. Res., 103(D8): 8813-8826 https://doi.org/10.1029/98JD00049
  17. Toon, I., and J. E. Pollack, 1976. A global average model of atmospheric aerosols for radiative transfer calculations. J. Appl. Meteor., 15: 225-246 https://doi.org/10.1175/1520-0450(1976)015<0225:AGAMOA>2.0.CO;2
  18. Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002. A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AEROENT Measurements, J. Atmos. Sci. 59: 398-413 https://doi.org/10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2
  19. Vickers, R. S., and R. P. Lyon, 1967. Infrared sensing from spacecraft: A geological interpretation, in Thermophysics of Spacecraft and Planetary Bodies: Radiation Properties of Solids and the Electromagnetic Radiation Environment in Space, edited by G. B. Heller, pp. 585-607, Academic, San Diego, Calif., Calif
  20. Wen, S. and W. I. rose, 1994. Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5, J. Geophy. Res., 99(D3): 5421-5431 https://doi.org/10.1029/93JD03340
  21. Whitby, K. T., 1978. The physical characteristics of sulfur aerosols. Atmos. Env., 12: 135-159 https://doi.org/10.1016/0004-6981(78)90196-8
  22. Yu, T., and W. I. rose, 2002. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using 'split window' IR data from GOES and AVHRR. J. Geophy. Res., 107(D16): 10.1029/2001/JD000706