• 제목/요약/키워드: Solar Module Temperature

검색결과 234건 처리시간 0.03초

수상 태양광발전 시스템의 데이터 분석을 통한 실증에 관한 연구 (Data Analysis of Water Through the Photovoltaic Solar System to the Empirical Study)

  • 김은기;최형철;이종석;신강욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1402-1403
    • /
    • 2011
  • Photovoltaic solar energy policy in the keynote of the world in the development of new technologies in terms of renewable energy sources has been a great interest. Solar energy is the energy density, low light intensity, temperature, and a lot of areas affected by the difference, the effective use difficult. For the installation of photovoltaic solar power systems to develop farmland or forest land resulting from deforestation has become such a problem. In this paper, a way to resolve these issues as part of the development of the reservoir water through the efficient use of land and water resources through the eco-friendly energy production, water quality improvement, the cooling effect of solar modules, solar water system has the advantage of was installed. Terrestrial solar systems installed under the same conditions and solar radiation, power, module temperature, ambient temperature and analyzed. Through this award to demonstrate the effectiveness of the solar system is.

  • PDF

반사판을 이용한 저집속 집광형 태양광 모듈 제작 및 평가 (Fabrication and Evaluation of Low Concentrator Photovoltaic Modules with Aluminium Reflectors)

  • 정혜정;이영우;주성민;이호재;부성재
    • 신재생에너지
    • /
    • 제4권4호
    • /
    • pp.17-22
    • /
    • 2008
  • A low concentrating (< 5X) photovoltaic module with aluminum reflectors is fabricated and evaluated which is designed to reduce the affection of the high temperature to the solar cell modules preventing the efficiency lowering. As results, the output power is increased of 1.97X from the concentrating photovoltaic module which is designed with the concentrating ratio of 2.25X and to control the module temperature cooling the module by air circulation. Also, the effect of the concentrating module with aluminum reflectors on the conventional PV module is investigated at the field. The result shows the increase of the output power more than about 20% and the improvement of the module efficiency of 1.4X in spite of the increase of average module temperature.

  • PDF

Correlation between Reverse Voltage Characteristics and Bypass Diode Operation with Different Shading Conditions for c-Si Photovoltaic Module Package

  • Lim, Jong-Rok;Min, YongKi;Jung, Tae-Hee;Ahn, Jae-Hyun;Ahn, Hyung-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.577-584
    • /
    • 2015
  • A photovoltaic (PV) system generates electricity by installing a solar energy array; therefore, the photovoltaic system can be easily exposed to external factors, which include environmental factors such as temperature, humidity, and radiation. These factors-as well as shading, in particular-lead to power degradation. When there is an output loss in the solar cell of a PV module package, the output loss is partly controlled by the bypass diode. As solar cells become highly efficient, the characteristics of series resistance and parallel resistance improve, and the characteristics of reverse voltage change. A bypass diode is connected in parallel to the string that is connected in series to the PV module. Ideally, the bypass diode operates when the voltage is -0.6[V] around. This study examines the bypass diode operating time for different types of crystalline solar cells. It compares the reverse voltage characteristics between the single solar cell and polycrystalline solar cell. Special modules were produced for the experiment. The shading rate of the solar cell in the specially made solar energy module was raised by 5% each time to confirm that the bypass diode was operating. The operation of the bypass diode is affected not only by the reverse voltage but also by the forward bias. This tendency was verified as the number of strings increased.

태양광 모듈 개별 모니터링을 위한 무선 IoT센서 (Development of Wireless IoT Sensors for Individual Photovoltaic Module Monitoring)

  • 박종성;김창헌;이지원;김지현;유상혁;양범승
    • Current Photovoltaic Research
    • /
    • 제9권3호
    • /
    • pp.106-109
    • /
    • 2021
  • In order to perform photovoltaic (PV) operation and management (O&M) efficiently, individual PV module monitoring is becoming more important. In this research, we developed wireless IoT sensor which can monitor individual photovoltaic modules. This IoT sensor can detect the output voltage, current and module temperature of individual modules and provide monitored data by wireless communication. Measured voltage error was 1.23%, and it shows 16.6 dBM, 0.42sec and 7.1 mA for voltage, transmittance output, response time and mean power consumption, respectively. IoT sensors were demonstrated in the test field with real climate environment condition and each of 5 sensors showed precise results of voltage, current and temperature. Also, sensors were compared with commercial power-optimizers and showed result difference within 5%.

태양광 시스템의 일사량과 모듈온도에 따른 I-V 및 P-V 특성 연구 (A Study on the Characteristics of Photovoltaic I-V and P-V According to the Irradiation and Module Temperature)

  • 신현만;이영;박세준;최용성;장우새;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.437-446
    • /
    • 2009
  • Solar, as an ideal renewable energy, it has inexhaustible, clean and safe characteristics. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC current and DC power vary with the irradiation and module temperature, it is necessary to study the characteristics of photovoltaic I-V and P-V according to the external factors. This paper presents the analysis of characteristics of photovoltaic I-V and P-V according to the irradiation and the module temperature. The results show that the DC current and the DC power of the photovoltaic system are increased along with the increasing values of irradiation.

다양한 외부 환경에서의 태양전지모듈의 열적 전기적 특성 평가 (Evaluation of Electric and Thermal Characteristics of Photovoltaic Module under Various Temperature and Irradiance Conditions)

  • 김경수;소정훈;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.125-130
    • /
    • 2010
  • Normally, PV system is designed using local weather condition like lowest and highest temperature and irradiance. But this might give misleading results because it is not realistic data of PV module itself. To give more specific description of PV system, we tested photovoltaic(PV) modules' temperature, irradiance and maximum power generation characteristics from January to December in 2008 for 3kW PV system. From this, we could deeply analyze the accumulation temperature, electrical characteristics of PV module in various condition. So precise approach to PV system design can be done. The detail description is specified as the following paper.

CPV 냉각용 열분산기 모듈의 열성능에 관한 실험적 연구 (Experimental Investigation on the Thermal Performance of a Heat Spreader Module for the CPV Cooling)

  • 도규형;한용식;최병일;김명배
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.95-102
    • /
    • 2011
  • In this paper, the thermal performance of a heat spreader module for CPV(Concentrating Photovoltaic) cooling is experimentally investigated. In order to evaluate the thermal performance of the heat spreader module which consists of a Metal PCB and an aluminum alloy heat spreader, experiments are conducted with varying the type of the metal PCB, the thickness of the heat spreader, the inclination angle, and the applied heat flux. To validate the experimental data, three dimensional numerical simulations are performed using the commercial simulation tool in the present work. The experimental results are compared with the corresponding numerical results and are in close agreement with the numerical results. From the experimental results, the temperature difference between the maximum temperature and the ambient temperature increases with decreasing the thickness of the heat spreader and with increasing the applied heat flux. Also, it is found that the inclination angle significantly affects the thermal performance of the heat spreader. the maximum temperature difference of the heat spreader with the horizontal orientation is much larger than that with the vertical orientation.

기후데이터 분석을 통한 태양광모듈의 내구성 평가 기준 제안 (Suggestion of PV Module Test Methods Based on Weathering Monitoring)

  • 김경수;윤재호
    • Current Photovoltaic Research
    • /
    • 제7권2호
    • /
    • pp.46-50
    • /
    • 2019
  • The photovoltaic (PV) system consists of solar cells, solar modules, inverters and peripherals. The related evaluation and certification are proceeding as standards published by the IEC (International Electrotechnical Commission) TC (Technical Committee) 82. In particular, PV module is a component that requires stable durability over 20 years, and evaluation in various external environments is very important. Currently, IEC 61215-based standards are being tested, but temperature, humidity, wind and solar radiation conditions are not considered in all areas. For this reason, various types of defects may occur depending on the installation area of the same photovoltaic module. In particular, the domestic climate (South Korea) is moderate. The various test methods proposed by IEC 61215 are appropriate, excessive, or insufficient, depending on environmental condition. In this paper, we analyze the climate data collection for one year to understand the vulnerability of this test method of PV modules. Through this, we propose a test method for PV module suitable for domestic climatic conditions and also propose a technical consideration for installation and design of PV system.

A Study on the Effect of Shading on a Photovoltaic Module

  • Baatarbileg, Ankhzaya;Otgongerel, Zulmandakh;Lee, Gae-Myoung
    • 새물리
    • /
    • 제68권11호
    • /
    • pp.1215-1224
    • /
    • 2018
  • Most solar photovoltaic (PV) modules frequently get shadowed, completely or partially, resulting in a reduction of PV generation. This paper presents and compares the results from simulations and experimental measurements of the power output from a single PV module under various shading conditions. The study was carried out with a 90 W PV module and a 250 W PV module. The shaded area was increased from 0 to 100% for both variable and constant irradiances to analyze the effect of fluctuations in the solar irradiance certain shading conditions. The effect of shading for irradiance levels from 100 to $900W/m^2$ was investigated. Results showed that for every $100W/m^2$ decrease in the solar irradiance level, the power output decreased by 9, 0.7 and 1.5 W at 0, 25 and 50% shading, respectively. For solar irradiance levels higher than $500W/m^2$, the temperature increased by 1.6, 2.7 and $1.1^{\circ}C$ at 0, 25 and 50% shading, respectively, for every $100W/m^2$ increase in the irradiance.

액체식 PVT 복합모듈의 유형별 성능 비교 분석 (The Experimental Performance Comparison of a Water Type Glazed and Unglazed PV-Thermal Combined Modules)

  • 김진희;강준구;김준태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.792-797
    • /
    • 2009
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that receives solar radiation and produces electricity and heat simultaneously. In general, two types of PVT can be classified: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively lower temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of two types of the PVT combined module(water type), glazed(glass-covered) and unglazed, was analyzed. The electrical and thermal performance of the PVT combined modules were measured in outdoor conditions, and the results were compared.

  • PDF