DOI QR코드

DOI QR Code

A Study on the Effect of Shading on a Photovoltaic Module

  • Received : 2018.09.11
  • Accepted : 2018.10.30
  • Published : 2018.11.30

Abstract

Most solar photovoltaic (PV) modules frequently get shadowed, completely or partially, resulting in a reduction of PV generation. This paper presents and compares the results from simulations and experimental measurements of the power output from a single PV module under various shading conditions. The study was carried out with a 90 W PV module and a 250 W PV module. The shaded area was increased from 0 to 100% for both variable and constant irradiances to analyze the effect of fluctuations in the solar irradiance certain shading conditions. The effect of shading for irradiance levels from 100 to $900W/m^2$ was investigated. Results showed that for every $100W/m^2$ decrease in the solar irradiance level, the power output decreased by 9, 0.7 and 1.5 W at 0, 25 and 50% shading, respectively. For solar irradiance levels higher than $500W/m^2$, the temperature increased by 1.6, 2.7 and $1.1^{\circ}C$ at 0, 25 and 50% shading, respectively, for every $100W/m^2$ increase in the irradiance.

Keywords

Acknowledgement

Supported by : Jeju National University

References

  1. N. Kannan and D. Vakeesan, Renew. Sust. Energ. Rev. 62, 1092 (2016). https://doi.org/10.1016/j.rser.2016.05.022
  2. A. J. Hanson, C. A. Deline, S. M. MacAlpine, J. T. Stauth and C. R. Sullivan, IEEE J. Photovolt. 4, 1618 (2014). https://doi.org/10.1109/JPHOTOV.2014.2351623
  3. M. A. Al Mamun, M. Hasanuzzaman and J. Selvaraj, IET Renew. Power Gen. 11, 912 (2017). https://doi.org/10.1049/iet-rpg.2016.0902
  4. R. Ramaprabha and Dr. B. L. Mathur, Int. J. Recent Tr. Eng. 2, 56 (2009).
  5. L. F. Lavado Villa, D. Picault, B. Raison, S. Bacha and A. Labonne, IEEE J. Photovolt. 2, 154 (2012). https://doi.org/10.1109/JPHOTOV.2012.2185040
  6. S. Pareek and R. Dahiya, in Proceedings of Annual IEEE India Conference (INDICON) (New Delhi, India, December 17-20, 2015).
  7. S. Silvestre, A. Boronat and A. Chouder, Appl. Energy 86, 1632 (2009). https://doi.org/10.1016/j.apenergy.2009.01.020
  8. M. Jazayeri, S. Uysal and K. Jazayeri, in Proceedings of IEEE PES T&D Conference and Exposition (Chicago, IL, USA, April 14-17, 2014).
  9. S. Vijayalekshmy, G. R. Bindu and S. R. Iyer, in Proceedings of the World Congress on Engineering (July 2 - 4, 2014, London, U.K.), Vol. I, pp. 270-275.
  10. C. Rahmann, V. Vittal, J. Ascui and J. Haas, IEEE Trans. Sustain. Energ. 7, 173 (2016). https://doi.org/10.1109/TSTE.2015.2484261
  11. G. Cipriani, V. Di Dio, N. Madonia, R. Miceli and F. Pellitteri et al., Electrical Drives, Automation and Motion (2014), pp. 1003-1008.
  12. A. Dolara, G. C. Lazaroiu, S. Leva and G. Manzolini, Energy 55, 466 (2013). https://doi.org/10.1016/j.energy.2013.04.009
  13. DELORENZO global company, Available online: http://www.delorenzoglobal.com/documenti/prodotti/210317-SOLAR-BENG-SOLAR-ENERGY-MODULAR-TRAINER.pdf (accessed Aug. 30, 2018).
  14. T. Xiao, L. Zhang and S. Ma, in System Simulation and Scientific Computing, Part II: International Conference, ICSC 2012, Proceedings Part 2 (Shanghai, China, October 27-30, 2012).
  15. L. Castaner and S. Silvestre, Modelling Photovoltaic Systems Using PSpice (Wiley, 2002).