• Title/Summary/Keyword: Solar Cell Generator

Search Result 40, Processing Time 0.024 seconds

Optimization of Stand-Alone Hybrid Power Systems Using HOMER Program (HOMER 프로그램을 이용한 독립형 하이브리드 발전시스템 최적화)

  • Yang, Su-Hyung;Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • Diesel fuel is expensive because transportation to remote areas adds extra cost, and it causes air pollution by engine exhaust. Providing a feasible economical and environmental solution to diesel generators is important. A hybrid system of renewable plants and diesel generators can benefit islands or other isolated communities and increase fuel savings. Renewable energy is, however, a natural source that produces a fluctuating power output. In this paper, hybrid power system of the marado lighthouse is proposed to supply stable power in the stand-alone hybrid power system. The proposed hybrid power system consists of the diesel generator, wind turbine, photovoltaic, fuel cell, and battery bank. To decrease the carbon emissions and find the optimization, the cost analysis of hybrid system is simulated using HOMER program and the optimized hybrid power system is designed.

Development of a Hybrid Power Generation System Using Photovoltaic Cells and Piezoelectric Materials (태양 전지와 압전 재료를 이용한 하이브리드 발전시스템 개발)

  • Kim, Yeongmin;Ahmed, Rahate;Zeeshan, Zeeshan;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.51-58
    • /
    • 2019
  • This paper deals with the operation of a hybrid power generation system made with photovoltaic cells and piezoelectric materials. The system can produce power from the wind as well as from the sun subject to their availability. Irrespective of the largeness of their power production, the power developed by both generators (i.e., phtovoltaic cells and piezoelectric cells) were combined and stored before it was applied to a load. Especially, the AC power (current) developed from each piezoelectric generator was converted by a full wave bridge rectifier and then combined prior to its storage in a capacitor. It was observed that the system can produce a maximum output power of 6.49 mW at loading resistance of $100{\Omega}$.

Study on a Limit MPPT Controller for the Modelling of a Wind Power Generator (풍력발전기 모델링 및 리미트 MPPT제어기에 관한 연구)

  • Kang, Ju-Sung;Koh, Kang-Hoon;Choi, Kwang-Ju;Park, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.53-59
    • /
    • 2007
  • Now, the study is activity that the energy market depending on a fossil fuel tend to change different way. In middle of the study compositive use of renewable energy(fuel cell and wind power, solar cell, etc.) is dispersion power system which concern is increasing. But in the case of generation of electric wind power system is changeable to be turbulence and wind and win speed are changeable in several seconds, so making the best of wind energy the MPPT that role in this case is important. In this paper suggest a MPPT which is making a use of information of wind speed and turning speed, windmill, electric power but it is simpler than former way. We could verify that a proposed controller working at the highest point of electric power when wind speed is regular speed and changable speed through the simulation.

A Study on Water Balance in Stationary Load Proton Exchange Membrane(PEM) Fuel Cell Power Generator (고정 부하를 갖는 PEM 연료전지 발전기에 있어서의 수분 평형에 관한 연구)

  • Bakhtiar, Agung;Oh, Hoo-Kyu;Yoon, Jung-In;Kim, Young-Bok;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.128-135
    • /
    • 2011
  • 일반적으로 PEM 연료전지에서는 수분 균형이 시스템의 효율에 결정적으로 영향을 미치기 때문에, 이에 대한 균형(balance)을 잡는 것이 매우 중요하다. 특히, 촉매 층에서 물이 넘치는 익수현상(flooding)이나 건조현상(drying)이 발생하게 되면 연료전지의 효율이 급격하게 저하하므로, 항상 수분의 균형이 잡히도록 시스템을 제어하는 것이 일반적이다. 이 때,수분의 익수현상이나 건조현상은 PEM 연료전지의 용량과 주위의 환경, 즉 온도와 습도에 많은 영향을 받게 된다. 금번 논문에서는 가정용 규모인 3kW급에서 10kW급까지의 PEM 연료전지를 설치하였을 때, 주위의 환경(온도와 습도)이 수분 이동에 어떠한 영향을 미치는 지를 시간에 따라서 시뮬레이션(simulation)한 결과를 보여주고 있다. 결과에서 유입공기의 온도가 $50^{\circ}C$ 이하일 경우, 고정부하가 5kW급 이하이면 대부분이 건조현상이 발생하였으나, 고정부하가 6kW급 이상이 되면 익수현상이 운전시간이 20분 이내에서 발생하였다. 또한 고정부하를 최고 10kW급까지 올린 경우, 유입공기의 온도가 $50^{\circ}C$까지는 익수현상이 발생하였으나 $60^{\circ}C$ 이상인 경우에는 거의 건조현상이 발생함을 알 수 있었다.

A Case Study on the Improvement of the Beauty of Photovoltaic Generator : Focusing on the case of installation on the vertical side wall of a building (태양광 발전기의 심미성 향상을 위한 사례분석 연구 : 건물 수직 측벽에 설치되는 사례를 중심으로)

  • Lee, Jae-Hyun;Park, Ji-Hoon;Nam, Won-Suk;Jang, Jung-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.97-103
    • /
    • 2020
  • This study sets the solar power system installed and applied to the vertical side wall among the photovoltaic systems in the building as the scope of the research. The theoretical background was considered through literature research as a research method, and the current status, trends and characteristics of solar generator design installed and applied to domestic and foreign vertical side walls were then investigated and analyzed cases. As a result, the importance and necessity of photovoltaic generators, potential for power generation and growth were identified, and positive factors and directions were found for improving aestheticity. Based on this point, we would like to propose expected effects that can be applied to photovoltaic system design installed and applied to vertical side walls in the future, and confirm the direction and significance of the improvement of aesthetic quality of the proposal for development of thin film solar cell design technology using green facade design.

Power Enhance Effect on the Hybrid Cell Based on Direct Current Nanogenerator and an Organic Photovoltaic Device

  • Yun, Gyu-Cheol;Sin, Gyeong-Sik;Lee, Geun-Yeong;Lee, Ju-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.298-298
    • /
    • 2013
  • Finding renewable and clean energy resources is essential research to solve global warming and depletion of fossil fuels in modern society. Recently, complex harvesting of energy from multiple sources is available in our living environments using a single device has become highly desirable, representing a new trend in energy technologies. We report that when simultaneously driving the fusion and composite cells of two or more types, it is possible to make an affect the other cells to obtain a greater synergistic effect. To understand the coupling effect of photovoltaic and piezoelectric device, we fabricate the serially integrated hybrid cell (s-HC) based on organic solar cell (OSC) and piezoelectric nanogenerator (PNG). The size of increased voltage peaks when OSC and PNG are working on is larger than the case when only PNG is working. This voltage difference is the Voc change of OSC, not the voltage change of PNG and current density difference between these two cases is manifested more clearly. When the OSC and PNG are working in s-HC at the same time, piezoelectric potential (VPNG) is generated in ZnO and theoretical total voltage is sum of voltage of an OSC (VOSC) and VPNG. However, electrons from OSC are influenced by piezoelectric potential in ZnO and current loss of OSC in whole circuit decreases. As a result, VOSC increases temporarily. Current shows the similar behavior. PNG acts a resistance in the whole circuit and current loss occurs when the electrons from OSC pass through the PNG. But piezoelectric potential recover current loss and decrease the resistance of PNG. Our PNG can maintain piezoelectric potential when the strain is held owing to the LDH layer while general PNG cannot maintain piezoelectric potential. During the section that strain is held, voltage enhancement effect is maintained and same effect appeared even turn off the light. Actually at this time, electrons in ZnO nanosheets move to LDH and trapped by the positive charges in this layer. After this strain is held, piezoelectric potential of ZnO nanosheets is disappeared but potential difference which is developed by negative charge dominant LDH layer is remained. This potential acts similar role like piezoelectric potential in ZnO. Electrons from the OSC also are influenced by this potential and the more current flows.

  • PDF

Growth of ZnTe Thin Films by Oxygen-plasma Assisted Pulsed Laser Deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.185-185
    • /
    • 2011
  • ZnTe semiconductor is very attractive materials for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. Another application to photovoltaics proved that ZnTe is useful for the production of high-efficiency multi-junction solar cells [2,3]. By using the pulse laser deposition system, ZnTe thin films were deposited on ZnO thin layer, which is grown on (0001) Al2O3substrates. To produce the plasma plume from an ablated ZnO and ZnTe target, a pulsed (10 Hz) YGA:Nd laser with energy density of 95 mJ/$cm^2$ and wavelength of 266 nm by a nonlinear fourth harmonic generator was used. The laser spot focused on the surface of the ZnO and ZnTe target by using an optical lens was approximately 1 mm2. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen gas flow was controlled around 3 sccm by using a mass flow controller system. During the ZnTe deposition, the substrate temperature was $400^{\circ}C$ and the ambient gas pressure was $10^{-2}$ Torr. The structural properties of the samples were analyzed by XRD measurement. The optical properties were investigated by using the photoluminescence spectra obtained with a 325 nm wavelength He-Cd laser. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system.

  • PDF

Design of a Triple-input Energy Harvesting Circuit with MPPT Control (MPPT 제어기능을 갖는 삼중입력 에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.346-349
    • /
    • 2013
  • This paper describes a triple-input energy harvesting circuit using solar, vibration and thermoelectric energy with MPPT(Maximum Power Point Tracking) control. The designed circuit employs MPPT control to harvest maximum power available from a solar cell, PZT vibration element and thermoelectric generator. The harvested energies are simultaneously combined and stored in a storage capacitor, and then managed and transferred into a sensor node by PMU(Power Management Unit). MPPT controls are implemented using the linear relation between the open-circuit voltage of an energy transducer and its MPP(Maximum Power Point) voltage. The proposed circuit is designed in a CMOS 0.18um technology and its functionality has been verified through extensive simulations. The designed chip occupies $945{\mu}m{\times}995{\mu}m$.

  • PDF

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.

A Study on the Feasibility of IGCC under the Korean Electricity Market (국내 전력거래제도하에서 IGCC 사업성 확보를 위한 정책 제언)

  • Ko, Kyung-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.118-127
    • /
    • 2011
  • An IGCC was evaluated as one of the next generation technologies that would be able to substitute for coal-fired power plants. According to "The 4th Basic Plan of Long-term Electricity Supply & Demand" which is developed by the Electricity Business Acts, the first IGCC will be operated at 2015. Like other new and renewable energy such as solar PV, Fuel cell, The IGCC is considered as non-competitive generation technology because it is not maturity technology. Before the commercial operation of an IGCC in our electricity market, its economic feasibility under the Korean electricity market, which is cost-based trading system, is studied to find out institutional support system. The results of feasibility summarized that under the current electricity trading system, if the IGCC is considered like a conventional plant such as nuclear or coal-fired power plants, it will not be expected that its investment will be recouped within life-time. The reason is that the availability of an IGCC will plummet since 2016 when several nuclear and coal-fired power plants will be constructed additionally. To ensure the reasonable return on investment (NPV>0 IRR>Discount rate), the availability of IGCC should be higher than 77%. To do so, the current electricity trading system is amended that the IGCC generator must be considered as renewable generators to set up Price Setting Schedule and it should be considered as pick load generators, not Genco's coal fired-generators, in the Settlement Payment.